Получение ошибки ниже при попытке установить tabular_learner из библиотеки fastai2.
используемые загрузчики данных
learn = tabular_learner (dls, Layers = [1000 500], метрики = точность)
learn.fit (30,1e-2)
IndexError Traceback (most recent call last)
<ipython-input-35-f0c57ab3748f> in <module>
----> 1 learn.fit(30,1e-2)
/mnt/c/fastai2/fastai2/learner.py in fit(self, n_epoch, lr, wd, cbs, reset_opt)
191 self.epoch=epoch; self('begin_epoch')
192 self._do_epoch_train()
--> 193 self._do_epoch_validate()
194 except CancelEpochException: self('after_cancel_epoch')
195 finally: self('after_epoch')
/mnt/c/fastai2/fastai2/learner.py in _do_epoch_validate(self, ds_idx, dl)
173 dl,old,has = change_attrs(dl, names, [False,False])
174 self.dl = dl; self('begin_validate')
--> 175 with torch.no_grad(): self.all_batches()
176 except CancelValidException: self('after_cancel_validate')
177 finally:
/mnt/c/fastai2/fastai2/learner.py in all_batches(self)
141 def all_batches(self):
142 self.n_iter = len(self.dl)
--> 143 for o in enumerate(self.dl): self.one_batch(*o)
144
145 def one_batch(self, i, b):
/mnt/c/fastai2/fastai2/learner.py in one_batch(self, i, b)
149 self.pred = self.model(*self.xb); self('after_pred')
150 if len(self.yb) == 0: return
--> 151 self.loss = self.loss_func(self.pred, *self.yb); self('after_loss')
152 if not self.training: return
153 self.loss.backward(); self('after_backward')
/mnt/c/fastai2/fastai2/layers.py in __call__(self, inp, targ, **kwargs)
291 if targ.dtype in [torch.int8, torch.int16, torch.int32]: targ = targ.long()
292 if self.flatten: inp = inp.view(-1,inp.shape[-1]) if self.is_2d else inp.view(-1)
--> 293 return self.func.__call__(inp, targ.view(-1) if self.flatten else targ, **kwargs)
294
295 # Cell
~/anaconda3/envs/py3/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
530 result = self._slow_forward(*input, **kwargs)
531 else:
--> 532 result = self.forward(*input, **kwargs)
533 for hook in self._forward_hooks.values():
534 hook_result = hook(self, input, result)
~/anaconda3/envs/py3/lib/python3.6/site-packages/torch/nn/modules/loss.py in forward(self, input, target)
914 def forward(self, input, target):
915 return F.cross_entropy(input, target, weight=self.weight,
--> 916 ignore_index=self.ignore_index, reduction=self.reduction)
917
918
~/anaconda3/envs/py3/lib/python3.6/site-packages/torch/nn/functional.py in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction)
2019 if size_average is not None or reduce is not None:
2020 reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 2021 return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
2022
2023
~/anaconda3/envs/py3/lib/python3.6/site-packages/torch/nn/functional.py in nll_loss(input, target, weight, size_average, ignore_index, reduce, reduction)
1836 .format(input.size(0), target.size(0)))
1837 if dim == 2:
-> 1838 ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
1839 elif dim == 4:
1840 ret = torch._C._nn.nll_loss2d(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
IndexError: Target -1 is out of bounds.
Любая подсказка будет принята с благодарностью! Спасибо