Я работаю над Yolov3, OpenCV, python и Flask. Здесь я объясню детали использования каждого элемента.
Yolov3 - для обнаружения и распознавания объекта на видеовходе
Opencv - для захвата изображений обнаруженного объекта на видеовходе.
Flask - в качестве веб-сервера, поскольку он поддерживает python язык.
Моя цель Разработать приложение, способное захватывать изображение объекта и обновлять в flask Интернет напрямую или в режиме реального времени
Для вашей информации, в настоящее время моя система способна захватывать изображения и сохранять в одной папке с именем images с использованием OpenCv и python. Вы можете сослаться на код ниже.
opencv и python код для захвата изображения обнаруженного объекта
for i in range(len(boxes)):
if i in indexes:
x,y,w,h = boxes[i]
label = str(LABELS[class_ids[i]])
confidence= confidences[i]
color = colors[class_ids[i]]
crop_img = image[y:y + h, x:x + w]
imagesPath = "images/file_%d.jpg"%self.d
cv2.imwrite(imagesPath, crop_img)
self.d+=1
cv2.rectangle(image,(x,y),(x+w,y+h),color,2)
cv2.putText(image,label+" "+str(round(confidence,2)),(x,y+30),font,1,(255,255,255),2)
Когда изображения успешно сохраняются в папке изображений. Я конвертирую все изображения в base64 и возвращаю как json в flask. Здесь я присоединяю код python к flask.
. Преобразует изображение в base64 и рендерит в html шаблонах
@app.route("/images")
def get_images():
directory = os.listdir('C:/Users/HP/Miniconda3/envs/count_vechicle/coding/images')
os.chdir('C:/Users/HP/Miniconda3/envs/count_vechicle/coding/images')
image_list= list()
for file in directory:
data = dict()
base = os.path.basename(file)
data["label"] = base
open_file = open(file,'rb')
image_read = open_file.read()
image_64_encode = base64.encodebytes(image_read)
data["data"] = image_64_encode.decode('ascii')
image_list.append(data)
final_data = {'files':image_list}
return render_template('images.html', final_data=final_data)
. html
<!DOCTYPE html>
<html>
<head>
<!DOCTYPE html>
<html lang="en">
<head>
<title>yolo</title>
</head>
<body>
<h1 class="logo">Results</h1>
<ul>
{% for data in final_data.files %}
<li>{{data.label}}</li>
<img alt="embedded" src="data:image/jpg;base64,{{data.data}}"/>
{% endfor %}
</ul>
</body>
</html>
Проблема и вопрос
У меня есть две основные проблемы здесь.
1) Когда я запускаю свое приложение Мое приложение захватило изображения хорошо. Но это автоматически останавливается, когда изображение. html страница открыта для отображения изображения. Почему это происходит и как это решить?
2) Если приложение может захватить изображение, даже если я открою страницу с изображением. html. Что я должен сделать, чтобы обновить мой веб-сайт напрямую или в режиме реального времени?
Здесь я прилагаю полный код. Потому что я работал много недель, но до сих пор не нашел решения. Надеюсь, кто-то может помочь. Дайте мне знать, если вам нужна дополнительная информация
код
App.py
from flask import Flask, render_template, Response,jsonify
from camera import VideoCamera
import numpy as np
import os
import time
import detect as dt
from PIL import Image
import cv2
import base64
import json
from pprint import pprint
app = Flask(__name__)
def success_handle(output, status=200, mimetype='application/json'):
return Response(output, status=status, mimetype=mimetype)
@app.route("/images")
def get_images():
directory = os.listdir('C:/Users/HP/Miniconda3/envs/count_vechicle/coding/images')
os.chdir('C:/Users/HP/Miniconda3/envs/count_vechicle/coding/images')
flist = list()
for file in directory:
data = dict()
base = os.path.basename(file)
data["label"] = base
open_file = open(file,'rb')
image_read = open_file.read()
image_64_encode = base64.encodebytes(image_read)
data["data"] = image_64_encode.decode('ascii')
flist.append(data)
final_data = {'files':flist}
return render_template('images.html', final_data=final_data)
@app.route('/')
def index():
return render_template('index.html')
def gen(camera):
frame_id = 0
while True:
frame = camera.get_frame()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
@app.route('/video_feed')
def video_feed():
return Response(gen(VideoCamera()),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
app.run(host='0.0.0.0', debug=True)
камера. py
import cv2
import time
import os
import numpy as np
font = cv2.FONT_HERSHEY_PLAIN
starting_time= time.time()
frame_id = 0
count = 0
d = 0
labelsPath = os.path.sep.join(["yolo-coco", "coco.names"])
weightsPath = os.path.sep.join(["yolo-coco", "yolov3.weights"])
configPath = os.path.sep.join(["yolo-coco", "yolov3.cfg"])
#imagesPath = 'C:/Users/HP/Miniconda3/envs/count_vechicle/coding/images/file_%d.jpg"%d'
labelsPath = os.path.sep.join(["yolo-coco", "coco.names"])
VideoPath = os.path.sep.join(["videos", "highway.mp4"])
LABELS = open(labelsPath).read().strip().split("\n")
net = cv2.dnn.readNet(configPath, weightsPath)
layer_names = net.getLayerNames()
outputlayers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors= np.random.uniform(0,255,size=(len(LABELS),3))
class VideoCamera(object):
def __init__(self):
# Using OpenCV to capture from device 0. If you have trouble capturing
# from a webcam, comment the line below out and use a video file
# instead.
self.video = cv2.VideoCapture(VideoPath)
self.frame_id = 0
self.d = 0
# If you decide to use video.mp4, you must have this file in the folder
# as the main.py.
# self.video = cv2.VideoCapture('video.mp4')
def __del__(self):
self.video.release()
def get_frame(self):
success, image = self.video.read()
# We are using Motion JPEG, but OpenCV defaults to capture raw images,
# so we must encode it into JPEG in order to correctly display the
# video stream.
self.frame_id+=1
#print(frame_id)
height,width,channels = image.shape
#print (frame.shape)
#detecting objects
blob = cv2.dnn.blobFromImage(image,0.00392,(320,320),(0,0,0),True,crop=False) #reduce 416 to 320
net.setInput(blob)
outs = net.forward(outputlayers)
#print(outs)
print(outs[1])
#Showing info on screen/ get confidence score of algorithm in detecting an object in blob
class_ids=[]
confidences=[]
boxes=[]
for out in outs:
#print(out)
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
print(confidence)
if confidence > 0.8:
#object detected
center_x= int(detection[0]*width)
center_y= int(detection[1]*height)
w = int(detection[2]*width)
h = int(detection[3]*height)
#cv2.circle(img,(center_x,center_y),10,(0,255,0),2)
#rectangle co-ordinaters
x=int(center_x - w/2)
y=int(center_y - h/2)
#cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
boxes.append([x,y,w,h]) #put all rectangle areas
confidences.append(float(confidence)) #how confidence was that object detected and show that percentage
class_ids.append(class_id) #name of the object tha was detected
indexes = cv2.dnn.NMSBoxes(boxes,confidences,0.4,0.6)
# result = open('C:/Users/HP/Miniconda3/envs/count_vechicle/coding/images/frame%04d.txt'%(count), 'w')
for i in range(len(boxes)):
if i in indexes:
x,y,w,h = boxes[i]
label = str(LABELS[class_ids[i]])
# cv2.imwrite(label, crop_img)
confidence= confidences[i]
color = colors[class_ids[i]]
crop_img = image[y:y + h, x:x + w]
imagesPath = "images/file_%d.jpg"%self.d
cv2.imwrite(imagesPath, crop_img)
self.d+=1
cv2.rectangle(image,(x,y),(x+w,y+h),color,2)
cv2.putText(image,label+" "+str(round(confidence,2)),(x,y+30),font,1,(255,255,255),2)
elapsed_time = time.time() - starting_time
fps=frame_id/elapsed_time
cv2.putText(image,"FPS:"+str(round(fps,2)),(10,50),font,2,(0,0,0),1)
# cv2.imshow("Image",image)
# key = cv2.waitKey(1) #wait 1ms the loop will start again and we will process the next frame
# if key == 27: #esc key stops the process
# break;
ret, jpeg = cv2.imencode('.jpg', image)
return jpeg.tobytes()
index. html
<html>
<head>
<title>Object Detection</title>
</head>
<body>
<h1>Video Streaming Demonstration</h1>
<img src="{{ url_for('video_feed') }}">
</body>
</html>
images. html
<!DOCTYPE html>
<html>
<head>
<!DOCTYPE html>
<html lang="en">
<head>
<title>yolo</title>
</head>
<body>
<h1 class="logo">Results</h1>
<ul>
{% for data in final_data.files %}
<li>{{data.label}}</li>
<img alt="embedded" src="data:image/jpg;base64,{{data.data}}"/>
{% endfor %}
</ul>
</body>
</html>