Есть много способов оптимизировать отрисовку многих вещей, но поскольку вы только начинаете, самое важное, что в общем случае настройка буферов должна происходить во время инициализации, а не во время рендеринга.
См. Рисование нескольких моделей в WebGL
Код в вопросе ищет местоположения в каждом треугольнике. он должен искать местоположения как время инициализации.
Код также создает новый буфер для каждого треугольника. Было бы быстрее создать один буфер и просто обновить его новым треугольником, и, конечно, в конечном итоге ему не хватит памяти для создания новых буферов.
const context = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 a_Position;
void main() {
gl_Position = a_Position;
}
`;
const redFS = `
precision highp float;
void main() {
gl_FragColor = vec4(1, 0, 0, 1);
}
`;
const blueFS = `
precision highp float;
void main() {
gl_FragColor = vec4(0, 0, 1, 1);
}
`;
const blueProgram = twgl.createProgram(context, [vs, blueFS]);
const blueProgramInfo = {
program: blueProgram,
a_PositionLocation: context.getAttribLocation(blueProgram, "a_Position"),
};
const redProgram = twgl.createProgram(context, [vs, redFS]);
const redProgramInfo = {
program: redProgram,
a_PositionLocation: context.getAttribLocation(redProgram, "a_Position"),
};
const buffer = context.createBuffer();
function rand(min, max) {
return Math.random() * (max - min) + min;
}
// pre allocate
const triangleData = new Float32Array(6); // 3 vertices, 2 values per
function getTriangleGeometry() {
const x = rand(-1, 1);
const y = rand(-1, 1);
triangleData[0] = x;
triangleData[1] = y;
triangleData[2] = x + rand(-0.1, 0.1);
triangleData[3] = y + rand(-0.1, 0.1);
triangleData[4] = x + rand(-0.1, 0.1);
triangleData[5] = y + rand(-0.1, 0.1);
return triangleData;
}
function render() {
context.clear(context.COLOR_BUFFER_BIT);
for (let i = 0; i < 100; i++) {
const currentProgramInfo = i % 2 === 0 ? blueProgramInfo : redProgramInfo;
context.useProgram(currentProgramInfo.program);
const a_Position = currentProgramInfo.a_PositionLocation;
const triangleGeometry = getTriangleGeometry(); // returns Float32Array filled with randoms
context.bindBuffer(context.ARRAY_BUFFER, buffer);
context.bufferData(context.ARRAY_BUFFER, triangleGeometry, context.STATIC_DRAW);
context.enableVertexAttribArray(a_Position);
context.vertexAttribPointer(
a_Position,
2,
context.FLOAT,
false,
0,
0,
);
context.drawArrays(context.TRIANGLES, 0, 3);
}
requestAnimationFrame(render);
}
requestAnimationFrame(render);
<script src="https://twgljs.org/dist/4.x/twgl.min.js"></script>
<canvas></canvas>
Код в вопросе, по-видимому, использует 2 программы: одну для рисования синим, а другую - для красного. Вероятно, было бы быстрее иметь одну программу с униформой для выбора цвета.
const context = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 a_Position;
void main() {
gl_Position = a_Position;
}
`;
const fs = `
precision highp float;
uniform vec4 u_Color;
void main() {
gl_FragColor = u_Color;
}
`;
const program = twgl.createProgram(context, [vs, fs]);
const programInfo = {
program: program,
a_PositionLocation: context.getAttribLocation(program, "a_Position"),
u_ColorLocation: context.getUniformLocation(program, "u_Color"),
};
const buffer = context.createBuffer();
function rand(min, max) {
return Math.random() * (max - min) + min;
}
// pre allocate
const triangleData = new Float32Array(6); // 3 vertices, 2 values per
function getTriangleGeometry() {
const x = rand(-1, 1);
const y = rand(-1, 1);
triangleData[0] = x;
triangleData[1] = y;
triangleData[2] = x + rand(-0.1, 0.1);
triangleData[3] = y + rand(-0.1, 0.1);
triangleData[4] = x + rand(-0.1, 0.1);
triangleData[5] = y + rand(-0.1, 0.1);
return triangleData;
}
const blue = [0, 0, 1, 1];
const red = [1, 0, 0, 1];
function render() {
context.clear(context.COLOR_BUFFER_BIT);
context.useProgram(programInfo.program);
const a_Position = programInfo.a_PositionLocation;
context.bindBuffer(context.ARRAY_BUFFER, buffer);
context.enableVertexAttribArray(a_Position);
context.vertexAttribPointer(
a_Position,
2,
context.FLOAT,
false,
0,
0,
);
for (let i = 0; i < 100; i++) {
const color = i % 2 === 0 ? blue : red;
context.uniform4fv(programInfo.u_ColorLocation, color);
const triangleGeometry = getTriangleGeometry(); // returns Float32Array filled with randoms
context.bufferData(context.ARRAY_BUFFER, triangleGeometry, context.STATIC_DRAW);
context.drawArrays(context.TRIANGLES, 0, 3);
}
requestAnimationFrame(render);
}
requestAnimationFrame(render);
<script src="https://twgljs.org/dist/4.x/twgl.min.js"></script>
<canvas></canvas>
Было бы значительно быстрее, если вы поместите все треугольники в один буфер во время инициализации, а также цвета вершин каждого треугольника в буфер во время инициализации и просто нарисуйте их одним вызовом во время рендеринга. Если вы хотите, чтобы в каждом кадре были случайные треугольники, тогда все еще будет быстрее создать один буфер во время инициализации, заполнить N случайных треугольников в одном буфере и затем нарисовать их все в одном вызове отрисовки.
const context = document.querySelector('canvas').getContext('webgl');
const vs = `
attribute vec4 a_Position;
attribute vec4 a_Color;
varying vec4 v_Color;
void main() {
gl_Position = a_Position;
v_Color = a_Color;
}
`;
const fs = `
precision highp float;
varying vec4 v_Color;
void main() {
gl_FragColor = v_Color;
}
`;
const program = twgl.createProgram(context, [vs, fs]);
const programInfo = {
program: program,
a_PositionLocation: context.getAttribLocation(program, "a_Position"),
a_ColorLocation: context.getAttribLocation(program, "a_Color"),
u_ColorLocation: context.getUniformLocation(program, "u_Color"),
};
const positionBuffer = context.createBuffer();
const colorBuffer = context.createBuffer();
function rand(min, max) {
return Math.random() * (max - min) + min;
}
const numTriangles = 1000;
const positionData = new Float32Array(numTriangles * 3 * 2);
const colorData = new Float32Array(numTriangles * 3 * 4);
const blue = [0, 0, 1, 1];
const red = [1, 0, 0, 1];
// the color data does not change so fill it out at init time
for (let i = 0; i < numTriangles; ++i) {
const offset = i * 4;
colorData.set(i % 2 === 0 ? blue : red, offset);
}
context.bindBuffer(context.ARRAY_BUFFER, colorBuffer);
context.bufferData(context.ARRAY_BUFFER, colorData, context.STATIC_DRAW);
function getTriangleGeometry() {
for (let i = 0; i < numTriangles; ++i) {
const offset = i * 3 * 2; // 3 verts per tri, 2 values per ver
const x = rand(-1, 1);
const y = rand(-1, 1);
positionData[offset ] = x;
positionData[offset + 1] = y;
positionData[offset + 2] = x + rand(-0.1, 0.1);
positionData[offset + 3] = y + rand(-0.1, 0.1);
positionData[offset + 4] = x + rand(-0.1, 0.1);
positionData[offset + 5] = y + rand(-0.1, 0.1);
}
return positionData;
}
function render() {
context.clear(context.COLOR_BUFFER_BIT);
context.useProgram(programInfo.program);
const a_Position = programInfo.a_PositionLocation;
context.bindBuffer(context.ARRAY_BUFFER, positionBuffer);
const triangleGeometry = getTriangleGeometry(); // returns Float32Array filled with randoms
context.bufferData(context.ARRAY_BUFFER, triangleGeometry, context.DYNAMIC_DRAW);
context.enableVertexAttribArray(a_Position);
context.vertexAttribPointer(
a_Position,
2,
context.FLOAT,
false,
0,
0,
);
const a_Color = programInfo.a_ColorLocation;
context.bindBuffer(context.ARRAY_BUFFER, colorBuffer);
context.enableVertexAttribArray(a_Color);
context.vertexAttribPointer(
a_Color,
4,
context.FLOAT,
false,
0,
0,
);
context.drawArrays(context.TRIANGLES, 0, numTriangles * 3);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
<script src="https://twgljs.org/dist/4.x/twgl.min.js"></script>
<canvas></canvas>
Рисование группы случайных треугольников в каждом кадре, как у вас выше, возможно, является исключением. Большинство приложений WebGL рисуют трехмерные модели, созданные в пакете моделирования, поэтому гораздо чаще просто помещать данные в буфер один раз во время инициализации (например, данные для куба, сферы, автомобиля, человека, дерева), а затем Нарисуйте его во время рендеринга.
Также имейте в виду, что графические процессоры могут рисовать только столько пикселей, поэтому, если ваши треугольники большие (например, размер всего экрана), вы сможете нарисовать от 10 до нескольких 100). Экран 1920x1080 составляет около 2 миллионов пикселей. Таким образом, каждый полноэкранный треугольник также будет иметь размер около 2 миллионов пикселей. Рисунок 1000 из них составляет 2000 * 2 миллиона или 4 миллиарда пикселей. При 60 кадрах в секунду 240 миллиардов пикселей. GPU среднего класса может рисовать только 10 миллиардов в секунду, и это теоретический максимум, поэтому в лучшем случае он может делать это со скоростью ~ 2 кадра в секунду.
Большинство 3D-приложений рисуют сцену, где большинство треугольников находятся далеко и маленький. Они также используют буфер глубины и рисуют непрозрачные объекты спереди назад, чтобы пиксели сзади не рисовались.