Значения данных X иногда нужно немного сместить для этого уравнения, и когда я попробовал это, это работало довольно хорошо. Вот графический сборщик Python, использующий ваши данные и смещенное по X уравнение "y = a * ln (x + b) + c".
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# ignore any "invalid value in log" warnings internal to curve_fit() routine
import warnings
warnings.filterwarnings("ignore")
X=[3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7]
Y=[-5.890486683, -3.87063815, -2.733484754, -2.104972457, -1.728190699, -1.477976987, -1.285589215, -1.120224363, -0.968576581, -0.82492453, -0.688457731, -0.559780327, -0.440437932, -0.331886009, -0.235162505, -0.150572236, -0.078157925, -0.01718885]
# alias data to match previous example
xData = numpy.array(X, dtype=float)
yData = numpy.array(Y, dtype=float)
def func(x, a, b, c): # x-shifted log
return a*numpy.log(x + b)+c
# these are the same as the scipy defaults
initialParameters = numpy.array([1.0, 1.0, 1.0])
# curve fit the test data
fittedParameters, pcov = curve_fit(func, xData, yData, initialParameters)
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('Parameters:', fittedParameters)
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)