Вы можете рассчитать евклидово расстояние и косинусное сходство в тензорном потоке 2.X, как показано ниже. Возвращенный вывод также будет тензорным.
import tensorflow as tf
# It should be tf 2.0 or greater
print("Tensorflow Version:",tf.__version__)
#Create Tensors
x1 = tf.constant([1.0, 112332.0, 89889.0], shape=(1,3))
print("x1 tensor shape:",x1.shape)
y1 = tf.constant([1.0, -2.0, -8.0], shape=(1,3))
print("y1 tensor shape:",y1.shape)
#Cosine Similarity
s = tf.keras.losses.cosine_similarity(x1,y1)
print("Cosine Similarity:",s)
#Normalized Euclidean Distance
s = tf.norm(tf.nn.l2_normalize(x1, 0)-tf.nn.l2_normalize(y1, 0),ord='euclidean')
print("Normalized Euclidean Distance:",s)
#Euclidean Distance
s = tf.norm(x1-y1,ord='euclidean')
print("Euclidean Distance:",s)
Вывод вышеуказанного кода - -
Tensorflow Version: 2.1.0
x1 tensor shape: (1, 3)
y1 tensor shape: (1, 3)
Cosine Similarity: tf.Tensor([0.7897223], shape=(1,), dtype=float32)
Normalized Euclidean Distance: tf.Tensor(2.828427, shape=(), dtype=float32)
Euclidean Distance: tf.Tensor(143876.33, shape=(), dtype=float32)