Читать бинарный файл с помощью R - PullRequest
0 голосов
/ 19 января 2020

Я ищу помощь для чтения двоичного файла с R.

Я знаю, что файл может быть успешно импортирован в Python со следующим кодом (np для numpy):

dt = np.dtype([('var1', np.uint32), ('var2', np.uint16), ('var3', np.int16), 
('var4', np.int16), ('var5', np.int16)])
data = np.fromfile('filename.DAT', dtype=dt)

Я, однако, не понимаю, как использовать readBin для импорта этого файла в R. Любая помощь будет оценена.

1 Ответ

1 голос
/ 19 января 2020

Вполне возможно, существует уже существующее решение этой проблемы с использованием пакетов Reticulate или RcppCNPy . Тем не менее, я подумал, что было бы полезно показать, как вы можете сделать это на базе R.

Когда вы читаете произвольные двоичные данные в R, используя readBin, он считывает файл в «сырой» вектор. Это вектор отдельных байтов в файле. Таким образом, вы могли бы сделать:

my_data <- readBin("filename.DAT", "raw", 10e6)

Таким образом, легко получить данные в R. Трудная часть заключается в их интерпретации.

Насколько я могу судить по документам numpy, данные, хранящиеся в вашем DAT, должны записываться как непрерывный блок байтов с порядком байтов в младшем порядке. Таким образом, в вашем файле с указанным форматом у вас должны быть первые 4 байта, представляющие 32-разрядное целое число без знака, следующие два байта, представляющие целое число без знака, и следующие 6 байтов, представляющие 3 16-разрядных целых числа со знаком. Затем этот шаблон будет повторяться каждые 12 байт до конца файла.

Этот формат не используется в R, поэтому для восстановления данных требуется немного усилий. Допустим, вы прочитали свои данные, и это выглядит так:

my_data
#  [1] 44 5f 93 e8 34 e6 f1 a9 a1 10 35 2e b0 62 c5 7f b7 fd 61 c7 ef 37 a7 21 45 63
# [27] 04 62 de 57 7b 99 7e 30 d3 ab cb 1c b9 69 d2 a6 c8 8e 88 ca 06 7a bb b1 7a dc
# [53] 70 3f 13 1a 51 85 a9 68

Если вы хотите посмотреть, как выглядят ваши байты в терминах строк данных в вашей таблице, вы можете сделать это:

t(matrix(my_data, nrow = 12))
#      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
# [1,]   44   5f   93   e8   34   e6   f1   a9   a1    10    35    2e
# [2,]   b0   62   c5   7f   b7   fd   61   c7   ef    37    a7    21
# [3,]   45   63   04   62   de   57   7b   99   7e    30    d3    ab
# [4,]   cb   1c   b9   69   d2   a6   c8   8e   88    ca    06    7a
# [5,]   bb   b1   7a   dc   70   3f   13   1a   51    85    a9    68

Это означает, что ваши двоичные данные должны интерпретироваться следующим образом:

#  <-----var1--------> <-var2--> <-var3--> <-var4--> <-var5->
#  44   5f   93   e8  | 34   e6 | f1   a9 | a1   10 | 35   2e  <- row 1
#  b0   62   c5   7f  | b7   fd | 61   c7 | ef   37 | a7   21  <- row 2
#  45   63   04   62  | de   57 | 7b   99 | 7e   30 | d3   ab  <- row 3
#  cb   1c   b9   69  | d2   a6 | c8   8e | 88   ca | 06   7a  <- row 4
#  bb   b1   7a   dc  | 70   3f | 13   1a | 51   85 | a9   68  <- row 5

Итак, если мы сначала создадим фрейм данных из этой матрицы:

df <- as.data.frame(t(matrix(as.numeric(my_data), nrow = 12)))

Теперь мы можем воссоздать наши переменные из известной структуры файла:

# Make our 32-bit numbers
var1 <- df$V1 + 2^8 * df$V2 + 2^16 * df$V3 + 2^24 * df$V4

# Make our 16-bit numbers
var2 <- df$V5  + 2^8 * df$V6
var3 <- df$V7  + 2^8 * df$V8
var4 <- df$V9  + 2^8 * df$V10
var5 <- df$V11 + 2^8 * df$V12

# Interpret our var3, 4 and 5 as signed rather than unsigned
var3 <- ifelse(var3 < 2^15, var3, var3 - 2^16)
var4 <- ifelse(var4 < 2^15, var4, var4 - 2^16)
var5 <- ifelse(var5 < 2^15, var5, var5 - 2^16)

# Store as a data frame
df <- data.frame(var1 = var1, var2 = var2, var3 = var3, var4 = var4, var5 = var5)

Это означает, что мы получаем следующую интерпретацию наших байтов:

df
#>         var1  var2   var3   var4   var5
#> 1 3901972292 58932 -22031   4257  11829
#> 2 2143642288 64951 -14495  14319   8615
#> 3 1644454725 22494 -26245  12414 -21549
#> 4 1773739211 42706 -28984 -13688  31238
#> 5 3699028411 16240   6675 -31407  26793

Итак, предполагая, что ваши данные находятся в ТОЧНО указанном вами формате, следующая функция должна извлечь их как фрейм данных:

read_numpy_data <- function(path, max_file_size = 10e6)
{
  my_data <- readBin(path, "raw", max_file_size)
  df      <- as.data.frame(t(matrix(as.numeric(my_data), nrow = 12)))
  as_sign <- function(x, y) {(x + 2^8 * y) -> z; ifelse(z < 2^15, z, z - 2^16)}
  data.frame(var1 = df$V1 + 2^8 * df$V2 + 2^16 * df$V3 + 2^24 * df$V4,
             var2 = df$V5  + 2^8 * df$V6,
             var3 = as_sign(df$V7,  df$V8),
             var4 = as_sign(df$V9,  df$V10),
             var5 = as_sign(df$V11, df$V12))
}
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...