Используя оценку движущегося горизонта GEKKO и прогностический контроль модели, реагируйте на данные измерений, а не на средние измерения - PullRequest
5 голосов
/ 19 января 2020

Я работал над этой моделью, которая имитирует инвентарь магазина. Единственное, чего я не могу получить - это использовать данные измерений при расчете запасов.

В настоящее время для расчета используются только средние данные измерений. Есть ли способ, где я могу напрямую использовать данные измерений для расчетов? Я работал над примерами, приведенными для примера GEKKO, лаборатория H.

В настоящее время я ошибаюсь, так как первые шаги при моделировании «данных о продажах» выше, чем запас. Это должно привести к отставанию. Но в настоящее время это не так. Инвентарь реагирует только на усредненные данные измерений (Inv_set)

Заранее спасибо,

from random import random
from gekko import GEKKO
import matplotlib.pyplot as plt
import json


Loops = 50

# number of data points (every day)
n = Loops + 1

# model time
tm = np.linspace(0,Loops,(Loops+1))



safetystock = 5

# time MPC
t = np.linspace(0,40,41)

MPC_time = len(t)

Transport_time = 3


## Output variables

Inv     = np.ones(Loops)*0
Order   = np.ones(Loops)*0
Order_delay = np.ones(Loops)*0
Order_unfilled = np.ones(Loops)*0
Order_mhe = np.ones(Loops)*0

Setpoint        = np.ones(Loops)*0
Setpoint_mhe    = np.ones(Loops)*0
Error           = np.ones(Loops)*0
Error_backlog   = np.ones(Loops)*0

Backlog         = np.ones(Loops)*0
Store_inventory = np.ones(Loops)*0





Sales_sp = np.ones(len(t))*15
Sales_sp_full = np.ones(len(tm)+len(t))*15



## Sales data for real store
SalesData = np.ones(len(tm)+len(t))*15
#SalesData[0:Loops] = Sold_schiphol_globaltime

#SalesData[5:10] = 5
#SalesData[10:15] = 5
SalesData[20:30] = 30
SalesData[30:35] = 30
#SalesData[35:40] = 5
#SalesData[50:75] = 5
#SalesData[85:100] = 10

SalesData[0] = 0

SalesData[11] = 5






# constants
mass = 1

# Parameters

mhe = GEKKO(name='mhe',remote=True)
mpc = GEKKO(name='mpc',remote=True)



for m in [mhe,mpc]:

    Z = m.Param(value=0)

    m.tau = m.Param(value=1)
    m.Kp = m.Param(value=1)

    # Manipulated variable
    m.Test = m.MV(value=0, lb=0, ub=100)

    m.Order = m.MV(value=0, lb=0, ub=100,integer=True)
    m.Order_delay = m.MV(value=0, lb=0, ub=100,integer=True)
    Delay_Order = Transport_time            # leadtime of transport

    m.delay(m.Order,m.Order_delay,Delay_Order)

    # Controlled Variable
    m.Inv = m.SV(value=0,name='Inv1' ,integer=True)          # inventory of store
    m.Inv_set = m.SV(value=0 , name='Inv_set',integer=True)  # Demand of shirts

    m.Backlog = m.SV(value=0 , lb=0)  
    m.Inv_test = m.SV(value=0)        
    m.Order_unfilled = m.SV(value=0)
    m.Storage_Location = m.SV(value=0 ,lb=0)

    # Error
    m.e = m.CV(value=0,name='e')
    m.e_backlog = m.CV(value=0,name='e_backlog')
    m.e_Storage = m.CV(value=0)
    m.e_Inv = m.CV(value=0)




    ############################# New Equations ##############################

    m.Equation( Z ==   - m.Inv_set + m.Order_unfilled ) 

    m.Equation( Z ==  m.Inv - m.Inv_set + m.Backlog - m.Storage_Location )
    m.Equation(m.Inv.dt() ==   m.Order_delay - m.Inv_set )




    ############################# New Equations ##############################
    ## Objective
    m.Equation(m.e==m.Inv_set)

    m.Equation(m.e_Inv==m.Inv-m.Inv_set -safetystock) #
    m.Equation(m.e_backlog ==  ( m.Backlog) )
    m.Equation(m.e_Storage ==  ( m.Storage_Location) )

    m.Obj(m.e_backlog)
    m.Obj(m.e_Storage)

#################################################

# Configure MHE
# 120 second time horizon, steps of 4 sec

ntm = 20
mhe.time = np.linspace(0,ntm,(ntm+1))


# MV tuning
mhe.Order.STATUS = 0 #allow optimizer to change
mhe.Order_delay.STATUS = 0 #allow optimizer to change

# CV tuning
mhe.e.STATUS = 0 #add the CV to the objective
mhe.e.FSTATUS = 0 

mhe.e_backlog.STATUS = 0
mhe.e_backlog.FSTATUS = 0


mhe.e_Storage.STATUS = 0
mhe.e_Storage.FSTATUS = 0
#
mhe.e_Inv.STATUS = 0
mhe.e_Inv.FSTATUS = 0

#mhe.Inv_set.STATUS = 0
mhe.Inv_set.FSTATUS = 1


# Solve
mhe.options.IMODE = 5 # control
mhe.options.NODES   = 2 # Collocation nodes
mhe.options.CV_TYPE = 3 #Dead-band
#mhe.options.SOLVER = 1 #Dead-band

##############################################
##################################################################
# Configure MPC



mpc.time = np.linspace(0,MPC_time,(MPC_time+1))


# MV tuning
mpc.Order.STATUS = 1 #allow optimizer to change
mpc.Order.DCOST = 0.1 #smooth out MV

mpc.Order_delay.STATUS = 1 #allow optimizer to change
mpc.Order_delay.DCOST = 0.1 #smooth out MV

# CV tuning
mpc.e.STATUS = 1 #add the CV to the objective
mpc.e.FSTATUS = 0 


mpc.e_backlog.STATUS = 0
mpc.e_backlog.COST = 100

mpc.e_Storage.STATUS = 0

mpc.e_Inv.STATUS = 1
mpc.e_Inv.FSTATUS = 0

mpc.Inv_set.FSTATUS = 1

db = 0
db_inv = 2
mpc.e.SPHI = db #set point
mpc.e.SPLO = -db #set point
mpc.e.TR_INIT = 1 #setpoint trajectory
mpc.e.TAU = 1 #time constant of setpoint trajectory

mpc.e_Inv.SPHI = db_inv  #set point #+ safetystock
mpc.e_Inv.SPLO = -db_inv #set point + safetystock
mpc.e_Inv.TR_INIT = 1 #setpoint trajectory
mpc.e_Inv.TAU = 1 #time constant of setpoint trajectory
#


# Solve
mpc.options.IMODE = 6 # control
mpc.options.NODES   = 2 # Collocation nodes
mpc.options.CV_TYPE = 3 #Dead-band
#mpc.options.SOLVER = 1 #Dead-band

##################################


print(1)

for i in range(1,Loops):



    print(i)


    #################################
    ### Moving Horizon Estimation ###
    #################################
    mhe.Inv_set.MEAS = SalesData[i]
    mhe.Order.MEAS = Order[i-1]
    mhe.Order_delay.MEAS = Order_delay[i-1]


    mhe.solve(disp=False)
    # Parameters from MHE to MPC (if successful)
    if (mhe.options.APPSTATUS==1):

        # CVs
        Setpoint_mhe[i] = mhe.Inv_set.MODEL    
        Order_mhe[i] = mhe.Order.NEWVAL
        print('Mhe ', i)

    #################################
    ### Model Predictive Control  ###
    #################################

    mpc.Inv_set.MEAS = SalesData[i]



    db = 0
    mpc.e.SPHI = SalesData[i] + db  #set point
    mpc.e.SPLO = SalesData[i] -db #set point


    mpc.solve(disp=False,GUI=False) #

    if (mpc.options.APPSTATUS==1):
        mpc.Order.MEAS = mpc.Order.NEWVAL #update production value
        mpc.Order_delay.MEAS = mpc.Order_delay.NEWVAL #update production value

        # output:

        Inv[i] = mpc.Inv.MODEL   

        Order[i] = mpc.Order.NEWVAL
        Order_delay[i] = mpc.Order_delay.NEWVAL
#        Order_unfilled[i] = mpc.Order_unfilled.MODEL
        Error[i] =  mpc.Inv_set.MODEL
        Setpoint[i] = Sales_sp_full[i]
#        Error[i] = mpc.e.MODEL
        Error_backlog[i] = mpc.e_backlog.MODEL

        Backlog[i]   = mpc.Backlog.MODEL
        Store_inventory[i] = mpc.Storage_Location.MODEL


        print('Mpc ', i)
        with open(m.path+'//results.json') as f:
                results = json.load(f)




    Total_sales = sum(SalesData[j] for j in range(i))
    Total_sales_mhe = sum(Setpoint_mhe[j] for j in range(i))
    Total_send = sum(Order_delay[j] for j in range(i))

    print("Total Sales        = %.2f" % Total_sales)
    print("Total sold mhe     = %.2f" % Total_sales_mhe)

    print("Total send         = %.2f" % Total_send)
    print("Shirt left in store          = %.2f"  % Inv[i])



    plt.clf()
    j = max(0,i-ntm-1)
    ax=plt.subplot(3,1,1)
    ax.grid()

    ax.axvspan(tm[j], tm[i], alpha=0.2, color='purple')
    ax.axvspan(tm[i], tm[i]+mpc.time[-1], alpha=0.2, color='orange')
    plt.text(tm[i]+10,40,'Future: MPC')
    plt.text(tm[j]+1,40,'Past: MHE')
    plt.plot(tm[0:i+1],SalesData[0:i+1],'ro',MarkerSize=2,label='Sales data')
    plt.plot(mhe.time-ntm+tm[i],mhe.Inv_set.value,'k.-',linewidth=1,alpha=0.7,label=r'Demand arrived history mhe')
    plt.plot(tm[0:i+1],Error[0:i+1],'b-',linewidth=1,alpha=0.7,label=r'Demand arrived history mpc')

#    plt.plot(mhe.time-ntm+tm[i],mhe.Inv.value,'r-',linewidth=2,alpha=0.7,label=r'Inventory At retail store')

    plt.plot(tm[0:i+1],Inv[0:i+1],'g.-',label=r'Total inventory',linewidth=2)

    plt.plot(tm[i]+mpc.time,results['e.bcv'],'r-',label=r'Demand predicted',linewidth=2)             
    plt.plot(tm[i]+mpc.time,results['e.tr_hi'],'k--',label=r'Demand estimation bandwidth ')
    plt.plot(tm[i]+mpc.time,results['e.tr_lo'],'k--')          
    plt.plot([tm[i],tm[i]],[-50,100],'k-')
    plt.ylabel('Retail store inventory')
    plt.legend(loc=3)
    plt.xlim(0, tm[i]+mpc.time[-1])
    plt.ylim(-25, 50)

    ax=plt.subplot(3,1,2)
    ax.grid()
    ax.axvspan(tm[j], tm[i], alpha=0.2, color='purple')
    ax.axvspan(tm[i], tm[i]+mpc.time[-1], alpha=0.2, color='orange')
    plt.text(tm[i]-2,10,'Current Time',rotation=90)
    plt.plot([tm[i],tm[i]],[-20,70],'k-',label='Current Time',linewidth=1)

    plt.plot(mhe.time-ntm+tm[i],mhe.Inv_set.value,'k-',linewidth=1,alpha=0.7,label=r'Demand arrived history')

    plt.plot(tm[0:i+1],Order[0:i+1],'--',label=r'Ordering shirts history',linewidth=1)
    plt.plot(tm[i]+mpc.time,mpc.Order.value,'b--',label=r'Order shirts plan',linewidth=1)
    plt.plot(tm[i]+mpc.time[0],mpc.Order_delay.value[1],color='blue', marker='.',markersize=15)

    plt.plot(tm[0:i+1],Order_delay[0:i+1],'b.-',label=r'Shirt arrived history',linewidth=2)
    plt.plot(tm[i]+mpc.time,mpc.Order_delay.value,'b-',label=r'Shirt arrived plan',linewidth=3)


    plt.ylabel('Replenishment of the store')
    plt.legend(loc=3)    
    plt.xlim(0, tm[i]+mpc.time[-1])
    plt.ylim(-10, 50)


    ax=plt.subplot(3,1,3)
    ax.grid()
    ax.axvspan(tm[j], tm[i], alpha=0.2, color='purple')
    ax.axvspan(tm[i], tm[i]+mpc.time[-1], alpha=0.2, color='orange')
    plt.plot([tm[i],tm[i]],[-20,80],'k-',label='Current Time',linewidth=1)

    plt.plot(tm[0:i],Store_inventory[0:i],'b--',MarkerSize=1,label='Inventory at the store ')
    plt.plot(tm[0:i],Backlog[0:i],'r--',MarkerSize=1,label='Backlog of the store')

    plt.ylabel('Retail store')
    plt.xlabel('Time (Days)')
    plt.legend(loc=3)
    plt.xlim(0, tm[i]+mpc.time[-1])
    plt.ylim(-1, 40)



    plt.draw()
    plt.pause(0.09)

plt.savefig('tclab_mhe_mpc.png')

1 Ответ

2 голосов
/ 23 января 2020

Вот несколько проблем с вашим текущим приложением:

  • Он использует решатель IPOPT по умолчанию, который даст вам неполный инвентарь, а не целочисленные решения. Вам нужно использовать m.options.SOLVER=1 для решателя смешанных целых чисел.
  • Вам нужно дать решателю возможность изменить backlog или другие переменные в MHE. Они должны быть определены как m.MV() типов с STATUS=1.
  • Оба приложения MHE и MP C пытаются минимизировать с помощью m.Obj(m.e_backlog) и m.Obj(m.e_Storage). Это правильно? Возможно, вам придется определить их отдельно как mhe.Obj() или mpc.Obj().

. Я рекомендую вам начать с приложения MHE и посмотреть, сможет ли оно привести вашу модель в соответствие с измерениями, оценивая вас по неизмеренным показателям. нарушения. Эти неизмеренные возмущения затем могут быть перенесены в ваше приложение MP C, чтобы предоставить обновленную модель для прогнозирования и оптимизации. Если вы хотите обновить что-то вроде инвентаря в вашем MP C, тогда вы можете использовать FSTATUS=1, чтобы обновить внутреннее смещение и согласовать с измерением. В курсах Машинное обучение и Динамическое c Оптимизация .

есть дополнительные учебные пособия по MHE и MP C.
...