Tensorflow использует только процессор и не использует графический процессор. Я предполагаю его, потому что он ожидает Cuda 10.0 и находит 10.2.
Я установил 10.2, но очистил его и установил 10.0.
Я работаю в Ubuntu 19.10, AMD Ryzen 2700 CPU, RTX 2080 S. Я установил драйвер 440 Nvidia, он говорит, что версия cuda 10.2 когда я проверяю с nvidia-smi и nv cc -version.
From pip3: tensorflow-gpu 1.14.0
tensorflow-datasets 2.0.0
tensorflow-estimator 1.14.0
tensorflow-metadata 0.21.1
От Nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.44 Driver Version: 440.44 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 208... Off | 00000000:08:00.0 On | N/A |
| 0% 48C P8 13W / 250W | 369MiB / 7979MiB | 3% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1110 G /usr/lib/xorg/Xorg 18MiB |
| 0 1611 G /usr/lib/xorg/Xorg 73MiB |
| 0 1816 G /usr/bin/gnome-shell 108MiB |
| 0 2655 C python3 115MiB |
+-----------------------------------------------------------------------------+
от nv cc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Oct_23_19:24:38_PDT_2019
Cuda compilation tools, release 10.2, V10.2.89
Но когда я проверяю version.txt, я получаю 10.0.130
cat /usr/local/cuda/version.txt
CUDA Version 10.0.130
Я проверяю устройства с помощью:
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
результат:
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 4810338588393992961
, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 7271419476897292826
physical_device_desc: "device: XLA_CPU device"
, name: "/device:XLA_GPU:0"
device_type: "XLA_GPU"
memory_limit: 17179869184
locality {
}
incarnation: 4332706623198547606
physical_device_desc: "device: XLA_GPU device"
]
Как мне зарегистрировать 10.0.130 Это причина, по которой он не работает на GPU? Это супер медленно на 8-ядерном процессоре. Любой совет?
Вот журнал:
2020-02-13 14:11:31.411277: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2020-02-13 14:11:31.440150: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3193485000 Hz
2020-02-13 14:11:31.441076: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5625b689c790 executing computations on platform Host. Devices:
2020-02-13 14:11:31.441123: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined>
2020-02-13 14:11:31.443001: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1
2020-02-13 14:11:31.472935: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-13 14:11:31.473407: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce RTX 2080 SUPER major: 7 minor: 5 memoryClockRate(GHz): 1.845
pciBusID: 0000:08:00.0
2020-02-13 14:11:31.474361: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
2020-02-13 14:11:31.487124: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
2020-02-13 14:11:31.496148: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0
2020-02-13 14:11:31.498873: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0
2020-02-13 14:11:31.514842: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0
2020-02-13 14:11:31.525992: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0
2020-02-13 14:11:31.526168: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcudnn.so.7'; dlerror: libcudnn.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64
2020-02-13 14:11:31.526183: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1663] Cannot dlopen some GPU libraries. Skipping registering GPU devices...
2020-02-13 14:11:31.618627: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-13 14:11:31.618655: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0
2020-02-13 14:11:31.618662: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N
2020-02-13 14:11:31.620367: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-13 14:11:31.621395: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5625b732d5f0 executing computations on platform CUDA. Devices:
2020-02-13 14:11:31.621407: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce RTX 2080 SUPER, Compute Capability 7.5
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 13330791690361361129
, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 11872341970779952422
physical_device_desc: "device: XLA_CPU device"
, name: "/device:XLA_GPU:0"
device_type: "XLA_GPU"
memory_limit: 17179869184
locality {
}
incarnation: 15007819717683015571
physical_device_desc: "device: XLA_GPU device"
]
WARNING:tensorflow:From pokeGAN.py:172: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
WARNING:tensorflow:From pokeGAN.py:174: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
WARNING:tensorflow:From pokeGAN.py:77: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead.
2020-02-13 14:11:33.799163: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-13 14:11:33.799597: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce RTX 2080 SUPER major: 7 minor: 5 memoryClockRate(GHz): 1.845
pciBusID: 0000:08:00.0
2020-02-13 14:11:33.799646: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
2020-02-13 14:11:33.799658: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
2020-02-13 14:11:33.799669: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0
2020-02-13 14:11:33.799684: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0
2020-02-13 14:11:33.799695: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0
2020-02-13 14:11:33.799706: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0
2020-02-13 14:11:33.799777: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcudnn.so.7'; dlerror: libcudnn.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.2/lib64
2020-02-13 14:11:33.799786: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1663] Cannot dlopen some GPU libraries. Skipping registering GPU devices...
2020-02-13 14:11:33.800016: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-13 14:11:33.800028: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187]
WARNING:tensorflow:From pokeGAN.py:203: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.
2020-02-13 14:11:34.197990: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set. If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU. To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
WARNING:tensorflow:From /home/node/.local/lib/python3.7/site-packages/tensorflow/python/training/saver.py:1276: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
WARNING:tensorflow:From pokeGAN.py:211: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
total training sample num:91
batch size: 64, batch num per epoch: 1, epoch num: 5000
start training...