Вы можете основывать свой выбор заказа, основываясь как на расстоянии угла для начала координат, так и на относительной позиции угла.
- Поиск контуров и иерархии.
Сохранение контуров без дочерних элементов (на основе иерархии). - Поиск углов ограничивающих прямоугольников.
Анализ углы основаны на следующих условиях (или найдите более простые условия):
- Верхний левый контур - это тот, у которого минимальное расстояние от верхнего левого угла.
- Нижний правый контур - это контур с максимальным расстоянием от верхнего левого угла.
- Другие два контура могут быть разделены максимальным x и максимальным y (после исключения верхнего левого и нижнего правого).
Решение ниже, др aws ограничивающие прямоугольники в цветах для тестирования:
- Красный
- Зеленый
- Синий
- Желтый
Вот пример рабочего кода (пожалуйста, прочитайте комментарии):
import numpy as np
import cv2
# Read input image as Grayscale
img = cv2.imread('img.png', cv2.IMREAD_GRAYSCALE)
# Convert img to uint8 binary image with values 0 and 255
# All black pixels goes to 0, and other pixels goes to 255
ret, thresh_gray = cv2.threshold(img, 1, 255, cv2.THRESH_BINARY)
# Find contours in thresh_gray.
cnts, hiers = cv2.findContours(thresh_gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:] # [-2:] indexing takes return value before last (due to OpenCV compatibility issues).
corners = [] # List of corners
dist = np.array([]) # Array of distance from axes origin
# Iterate cnts and hiers, find bounding rectangles, and add corners to a list
for c, h in zip(cnts, hiers[0]):
# If contours has no child
if h[2] == -1:
# Get bounding rectangle
x, y, w, h = cv2.boundingRect(c)
# Append corner to list of corners - format is corners[i] holds a tuple: ((x0, y0), (x1, y1))
p0 = (x, y)
p1 = (x+w, y+h)
corners.append((p0, p1))
# Distance of corners from origin
d = np.array([np.linalg.norm(p0), np.linalg.norm(p1)])
if dist.size == 0:
dist = d
else:
dist = np.vstack((dist, d))
top_left = np.argmin(dist[:,0]) # Index of top left corner (assume minimum distance from origin)
bottom_right = np.argmax(dist[:,1]) # Index of top bottom right corner (assume maximum distance from origin)
tmp_corners = np.array(corners)
tmp_corners[top_left, :, :] = np.array(((0,0), (0,0))) #Ignore top_left corners
tmp_corners[bottom_right, :, :] = np.array(((0,0), (0,0))) #Ignore bottom_right corners
bottom_left = np.argmax(tmp_corners[:,1,1]) #Maximum y is bottom left
tmp_corners[bottom_left, :, :] = np.array(((0,0), (0,0))) #Ignore bottom_left corners
top_right = np.argmax(tmp_corners[:,1,0]) #Maximum x is top right
# Convert Grayscale to BGR (just for testing - for drawing rectangles in green color).
out = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# Draw rectangles (for testing)
# 1. Red
# 2. Green
# 3. Blue
# 4. Yellow
cv2.rectangle(out, corners[top_left][0], corners[top_left][1], (0, 0, 255), thickness = 2)
cv2.rectangle(out, corners[bottom_left][0], corners[bottom_left][1], (0, 255, 0), thickness = 2)
cv2.rectangle(out, corners[top_right][0], corners[top_right][1], (255, 0, 0), thickness = 2)
cv2.rectangle(out, corners[bottom_right][0], corners[bottom_right][1], (0, 255, 255), thickness = 2)
cv2.imwrite('out.png', out) #Save out to file (for testing).
# Show result (for testing).
cv2.imshow('thresh_gray', thresh_gray)
cv2.imshow('out', out)
cv2.waitKey(0)
cv2.destroyAllWindows()
Результат: