Я использую min_max_scaler.fit_transform () для изменения масштаба каждого столбца в кадре данных - df.
df[['A', 'B', 'C']] = min_max_scaler.fit_transform(df[['A', 'B', 'C']])
Я получил ValueError: установка элемента массива с последовательностью. Однако эта ошибка возникает только при обработке одного из моих файлов CSV. Все остальные работают нормально. Я не знаю, с чего начать отладку? Может кто-нибудь предложить несколько направлений, чтобы выяснить проблему?
~/anaconda3/lib/python3.7/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
569 if y is None:
570 # fit method of arity 1 (unsupervised transformation)
--> 571 return self.fit(X, **fit_params).transform(X)
572 else:
573 # fit method of arity 2 (supervised transformation)
~/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/_data.py in fit(self, X, y)
337 # Reset internal state before fitting
338 self._reset()
--> 339 return self.partial_fit(X, y)
340
341 def partial_fit(self, X, y=None):
~/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/_data.py in partial_fit(self, X, y)
371 X = check_array(X,
372 estimator=self, dtype=FLOAT_DTYPES,
--> 373 force_all_finite="allow-nan")
374
375 data_min = np.nanmin(X, axis=0)
~/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
529 array = array.astype(dtype, casting="unsafe", copy=False)
530 else:
--> 531 array = np.asarray(array, order=order, dtype=dtype)
532 except ComplexWarning:
533 raise ValueError("Complex data not supported\n"
~/anaconda3/lib/python3.7/site-packages/numpy/core/numeric.py in asarray(a, dtype, order)
536
537 """
--> 538 return array(a, dtype, copy=False, order=order)
539
540
ValueError: setting an array element with a sequence.