Формирование системы уравнений ограничения с использованием каркаса оптимизации GEKKO - PullRequest
4 голосов
/ 13 февраля 2020

Я пытаюсь решить простую задачу оптимального управления с минимальным временем, используя динамику двойного интегратора формы,

dx1/dt = x2
dx2/dt = u

с помощью структуры оптимизации GEKKO, следующим образом:

from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt

model = GEKKO(remote=False)

x1_initial = 0.0
x1_final = 10.0

x2_initial = 0.0
x2_final = 0.0

t_initial = 0.0
t_final = 25.0
num_timesteps = 1000
dt = (t_final - t_initial) / num_timesteps

x = model.Array(model.Var, (2, num_timesteps + 1))
u = model.Array(model.Var, num_timesteps + 1)
tf = model.Var()

for k in range(num_timesteps + 1):
    u[k].lower = -0.4
    u[k].upper = 0.4
    u[k].value = 0.0

for k in range(num_timesteps + 1):
    x[0, k].value = 5.0
    x[1, k].value = 0.0

tf.lower = t_initial
tf.upper = t_final
tf.value = t_final
dt = (tf - t_initial) / num_timesteps

def f(x, u, k):
    return np.array([x[1,k], u[k]])

for k in range(num_timesteps):
    model.Equations([x[:, k + 1] == x[:, k] + (dt/2.0)*(f(x, u, k + 1) + f(x, u, k))])
    # model.Equation(x[0, k + 1] == x[0, k] + (dt/2.0)*(x[1, k + 1] + x[1, k]))
    # model.Equation(x[1, k + 1] == x[1, k] + (dt/2.0)*(u[k + 1] + u[k]))

model.Equation(x[0, 0] == x1_initial)
model.Equation(x[0, num_timesteps] == x1_final)

model.Equation(x[1, 0] == x2_initial)
model.Equation(x[1, num_timesteps] == x2_final)

model.Minimize(tf)
model.options.solver = 3
model.solve()

# Plotting results
t = np.linspace(t_initial, tf.value, num_timesteps + 1)

u_optimal = []
for k in range(num_timesteps + 1):
    u_optimal.append(u[k].value)

x1_optimal = []
for k in range(num_timesteps + 1):
    x1_optimal.append(x[0, k].value)

x2_optimal = []
for k in range(num_timesteps + 1):
    x2_optimal.append(x[1, k].value)

plt.figure()
plt.plot(t, u_optimal)
plt.xlabel('time (s)')
plt.ylabel('u(t)')
plt.grid()

plt.figure()
plt.plot(t, x1_optimal)
plt.xlabel('time (s)')
plt.ylabel('x1(t)')
plt.grid()

plt.figure()
plt.plot(t, x2_optimal)
plt.xlabel('time (s)')
plt.ylabel('x2(t)')
plt.grid()

plt.show()

То, что я пытаюсь сделать, это сформировать систему ограничений равенства с использованием трапециевидной интеграции, а затем решить эту систему для оптимальных входов управления с использованием GEKKO. Однако, используя определение функции

def f(x, u, k):
    return np.array([x[1,k], u[k]])

в сочетании с системой ограничений равенства,

for k in range(num_timesteps):
    model.Equations([x[:, k + 1] == x[:, k] + (dt/2.0)*(f(x, u, k + 1) + f(x, u, k))])

дает мне следующую ошибку:

Exception: @error: Equation Definition
 Equation without an equality (=) or inequality (>,<)
 false
 STOPPING...

I В приведенном выше фрагменте кода добавлены две закомментированные строки кода, которые позволят программе работать правильно, но я надеюсь избежать необходимости разделять каждое уравнение, так как я хотел бы расширить это на проблемы, которые имеют дело с более сложная системная динамика, а также использовать более сложные методы коллокации вместо трапециевидного подхода.

Я знаю, что у GEKKO есть несколько приятных особенностей для оптимизации Dynami c, но я пытаюсь реализовать различные прямые Я использую методы словосочетания, чтобы немного лучше понять теорию.

1 Ответ

1 голос
/ 14 февраля 2020

Есть несколько примеров ортогональной коллокации на конечных элементах в курсе машинного обучения и динамики c Оптимизация .

Collocation Example

from __future__ import division
import numpy as np
from scipy.optimize import fsolve
from scipy.integrate import odeint
import matplotlib.pyplot as plt

# final time
tf = 1.0

# solve with ODEINT (for comparison)
def model(x,t):
    u = 4.0
    return (-x**2 + u)/5.0
t = np.linspace(0,tf,20)
y0 = 0
y = odeint(model,y0,t)
plt.figure(1)
plt.plot(t,y,'r-',label='ODEINT')

# ----------------------------------------------------
# Approach #1 - Write the model equations in Python
# ----------------------------------------------------
# define collocation matrices
def colloc(n):
    if (n==2):
        NC = np.array([[1.0]])
    if (n==3):
        NC = np.array([[0.75,-0.25], \
                       [1.00, 0.00]])
    if (n==4):
        NC = np.array([[0.436,-0.281, 0.121], \
                       [0.614, 0.064, 0.0461], \
                       [0.603, 0.230, 0.167]])
    if (n==5):
        NC = np.array([[0.278, -0.202, 0.169, -0.071], \
                       [0.398,  0.069, 0.064, -0.031], \
                       [0.387,  0.234, 0.278, -0.071], \
                       [0.389,  0.222, 0.389,  0.000]])
    if (n==6):
        NC = np.array([[0.191, -0.147, 0.139, -0.113, 0.047],
                       [0.276,  0.059, 0.051, -0.050, 0.022],
                       [0.267,  0.193, 0.252, -0.114, 0.045],
                       [0.269,  0.178, 0.384,  0.032, 0.019],
                       [0.269,  0.181, 0.374,  0.110, 0.067]])
    return NC

# define collocation points from Lobatto quadrature
def tc(n):
    if (n==2):
        time = np.array([0.0,1.0])
    if (n==3):
        time = np.array([0.0,0.5,1.0])
    if (n==4):
        time = np.array([0.0, \
                         0.5-np.sqrt(5)/10.0, \
                         0.5+np.sqrt(5)/10.0, \
                         1.0])
    if (n==5):
        time = np.array([0.0,0.5-np.sqrt(21)/14.0, \
                         0.5,0.5+np.sqrt(21)/14.0, 1])
    if (n==6):
        time = np.array([0.0, \
                         0.5-np.sqrt((7.0+2.0*np.sqrt(7.0))/21.0)/2.0, \
                         0.5-np.sqrt((7.0-2.0*np.sqrt(7.0))/21.0)/2.0, \
                         0.5+np.sqrt((7.0-2.0*np.sqrt(7.0))/21.0)/2.0, \
                         0.5+np.sqrt((7.0+2.0*np.sqrt(7.0))/21.0)/2.0, \
                         1.0])
    return time*tf

# solve with SciPy fsolve
def myFunction(z,*param):
    n = param[0]
    m = param[1]
    # rename z as x and xdot variables
    x = np.empty(n-1)
    xdot = np.empty(n-1)
    x[0:n-1] = z[0:n-1]
    xdot[0:n-1] = z[n-1:m]

    # initial condition (x0)
    x0 = 0.0
    # input parameter (u)
    u = 4.0
    # final time
    tn = tf

    # function evaluation residuals
    F = np.empty(m)
    # nonlinear differential equations at each node
    # 5 dx/dt = -x^2 + u
    F[0:n-1] = 5.0 * xdot[0:n-1] + x[0:n-1]**2 - u
    # collocation equations
    # tn * NC * xdot = x - x0
    NC = colloc(n)
    F[n-1:m] = tn * np.dot(NC,xdot) - x + x0 * np.ones(n-1)
    return F

sol_py = np.empty(5) # store 5 results
for i in range(2,7):
    n = i
    m = (i-1)*2
    zGuess = np.ones(m)
    z = fsolve(myFunction,zGuess,args=(n,m))
    # add to plot
    yc = np.insert(z[0:n-1],0,0)
    plt.plot(tc(n),yc,'o',markersize=10,label='Nodes = '+str(i))
    # store just the last x[n] value
    sol_py[i-2] = z[n-2]
plt.legend(loc='best')

# ----------------------------------------------------
# Approach #2 - Write model in APMonitor and let
#   modeling language create the collocation equations
# ----------------------------------------------------
# load GEKKO
from gekko import GEKKO

sol_apm = np.empty(5) # store 5 results
i = 0
for nodes in range(2,7):
    m = GEKKO(remote=False)

    u = m.Param(value=4)
    x = m.Var(value=0)
    m.Equation(5*x.dt() == -x**2 + u)

    m.time = [0,tf]

    m.options.imode = 4
    m.options.time_shift = 0
    m.options.nodes = nodes

    m.solve() # solve problem
    sol_apm[i] = x.value[-1] # store solution (last point)
    i += 1

# print the solutions
print(sol_py)
print(sol_apm)

# show plot
plt.ylabel('x(t)')
plt.xlabel('time')
plt.show()

Вы можете определить переменные с одинаковыми именами (например, x) или использовать m.Array(m.Var,n) для определения переменных. Следует обратить внимание на файл модели, открыв папку запуска с помощью m.open_folder() перед отправкой команды m.solve(). Посмотрите на файл .apm в этой папке с помощью текстового редактора.

...