Аргументы для вызова метода могут иметь побочные эффекты, например method(variable = value)
, которые даже невозможно удалить, например, когда это приведет к доступу к неинициализированной переменной после удаленного вызова. На уровне байт-кода инструкции, относящиеся к оценке аргумента, могут чередоваться с произвольными несвязанными инструкциями.
Но когда мы ограничиваем область действия, у нас может быть решение. В вашем примере все вызовы являются invokevirtual
инструкциями, вызванными либо для подразумеваемого this
, либо для значения поля static
. Для этих вызовов мы действительно можем использовать ASM Analyzer
с SourceInterpreter
, чтобы идентифицировать начальную инструкцию aload
или getstatic
и принять все инструкции из этой инструкции и инструкцию вызова как принадлежащие выражению вызова метода.
Мы можем использовать код, подобный
public class IdentifyCall {
static IdentifyCall getInputs(
String internalClassName, MethodNode toAnalyze) throws AnalyzerException {
Map<AbstractInsnNode, Set<AbstractInsnNode>> sources = new HashMap<>();
SourceInterpreter i = new SourceInterpreter();
Analyzer<SourceValue> analyzer = new Analyzer<>(i);
return new IdentifyCall(toAnalyze.instructions, analyzer.analyze(internalClassName, toAnalyze));
}
private final InsnList instructions;
private final Frame<SourceValue>[] frames;
private IdentifyCall(InsnList il, Frame<SourceValue>[] analyzed) {
instructions = il;
frames = analyzed;
}
int[] getSpan(AbstractInsnNode i) {
MethodInsnNode mn = (MethodInsnNode)i;
// can't use getArgumentsAndReturnSizes, as for the frame, double and long do not count as 2
int nArg = mn.desc.startsWith("()")? 0: Type.getArgumentTypes(mn.desc).length;
int end = instructions.indexOf(mn);
Frame<SourceValue> f = frames[end];
SourceValue receiver = f.getStack(f.getStackSize() - nArg - 1);
if(receiver.insns.size() != 1) throw new UnsupportedOperationException();
AbstractInsnNode n = receiver.insns.iterator().next();
if(n.getOpcode() != Opcodes.ALOAD && n.getOpcode() != Opcodes.GETSTATIC)
throw new UnsupportedOperationException(""+n.getOpcode());
return new int[] { instructions.indexOf(n), end };
}
}
, и продемонстрировать его на следующем примере
public class IdentifyCallExample {
private void toAnalyze() {
System.out.println(
anotherMethod1(
anotherMethod2("a", "b") ?
"c" : anotherMethod3("d", "e") ? "f" : "g",
anotherMethod4("h", "i") ? "j" : "k"
) ? "l" : "m"
);
}
boolean anotherMethod1(String str, String oof) {
return true;
}
boolean anotherMethod2(String str, String oof) {
return true;
}
boolean anotherMethod3(String str, String oof) {
return true;
}
boolean anotherMethod4(String str, String oof) {
return true;
}
public static void main(String[] args) throws AnalyzerException, IOException {
Class<?> me = MethodHandles.lookup().lookupClass();
ClassReader r = new ClassReader(me.getResourceAsStream(me.getSimpleName()+".class"));
ClassNode cn = new ClassNode();
r.accept(cn, ClassReader.SKIP_DEBUG|ClassReader.SKIP_FRAMES);
MethodNode toAnalyze = null;
for(MethodNode mn: cn.methods)
if(mn.name.equals("toAnalyze")) {
toAnalyze = mn;
break;
}
List<int[]> invocations = new ArrayList<>();
final InsnList instructions = toAnalyze.instructions;
IdentifyCall identifyCall
= IdentifyCall.getInputs(me.getName().replace('.', '/'), toAnalyze);
for(int ix = 0, num = instructions.size(); ix < num; ix++) {
AbstractInsnNode instr = instructions.get(ix);
if(instr.getOpcode()!= Opcodes.INVOKEVIRTUAL) continue;
invocations.add(identifyCall.getSpan(instr));
}
printIt(invocations, instructions);
}
private static void printIt(List<int[]> invocations, final InsnList instructions) {
List<Level> levels = toTree(invocations);
Textifier toText = new Textifier();
TraceMethodVisitor tmv = new TraceMethodVisitor(toText);
for(int ix = 0, num = instructions.size(); ix < num; ix++) {
AbstractInsnNode instr = instructions.get(ix);
boolean line = false;
level: for(Level l: levels) {
if(ix >= l.lo && ix <= l.hi) {
for(int[] b: l.branches) {
if(ix < b[0] || ix > b[1]) continue;
System.out.print(line?
(b[0] == ix? b[1] == ix? "─[": "┬─": b[1] == ix? "┴─": "┼─"):
(b[0] == ix? b[1] == ix? " [": "┌─": b[1] == ix? "└─": "│ "));
line |= b[0] == ix || b[1] == ix;
continue level;
}
}
System.out.print(line? "──": " ");
}
instr.accept(tmv);
System.out.print(toText.text.get(0));
toText.text.clear();
}
}
static class Level {
int lo, hi;
ArrayDeque<int[]> branches=new ArrayDeque<>();
Level(int[] b) { lo=b[0]; hi=b[1]; branches.add(b); }
boolean insert(int[] b) {
if(b[1]<=lo) { branches.addFirst(b); lo=b[0]; }
else if(b[0]>=hi) { branches.addLast(b); hi=b[1]; }
else return b[0]>lo && b[1] < hi
&& (b[0]+b[1])>>1 > (lo+hi)>>1? tryTail(b, lo, hi): tryHead(b, lo, hi);
return true;
}
private boolean tryHead(int[] b, int lo, int hi) {
int[] head=branches.removeFirst();
try {
if(head[1] > b[0]) return false;
if(branches.isEmpty() || (lo=branches.getFirst()[0])>=b[1]) {
branches.addFirst(b);
return true;
}
else return b[0]>lo && b[1] < hi
&& (b[0]+b[1])>>1 > (lo+hi)>>1? tryTail(b, lo, hi): tryHead(b, lo, hi);
} finally { branches.addFirst(head); }
}
private boolean tryTail(int[] b, int lo, int hi) {
int[] tail=branches.removeLast();
try {
if(tail[0] < b[1]) return false;
if(branches.isEmpty() || (hi=branches.getLast()[1])<=b[0]) {
branches.addLast(b);
return true;
}
else return b[0]>lo && b[1] < hi
&& (b[0]+b[1])>>1 > (lo+hi)>>1? tryTail(b, lo, hi): tryHead(b, lo, hi);
} finally { branches.addLast(tail); }
}
}
static List<Level> toTree(List<int[]> list) {
if(list.isEmpty()) return Collections.emptyList();
if(list.size()==1) return Collections.singletonList(new Level(list.get(0)));
list.sort(Comparator.comparingInt(b -> b[1] - b[0]));
ArrayList<Level> l=new ArrayList<>();
insert: for(int[] b: list) {
for(Level level: l) if(level.insert(b)) continue insert;
l.add(new Level(b));
}
if(l.size() > 1) Collections.reverse(l);
return l;
}
}
, который будет печатать
┌───── GETSTATIC java/lang/System.out : Ljava/io/PrintStream;
│ ┌─── ALOAD 0
│ │ ┌─ ALOAD 0
│ │ │ LDC "a"
│ │ │ LDC "b"
│ │ └─ INVOKEVIRTUAL simple/IdentifyCallExample.anotherMethod2 (Ljava/lang/String;Ljava/lang/String;)Z
│ │ IFEQ L0
│ │ LDC "c"
│ │ GOTO L1
│ │ L0
│ │ ┌─ ALOAD 0
│ │ │ LDC "d"
│ │ │ LDC "e"
│ │ └─ INVOKEVIRTUAL simple/IdentifyCallExample.anotherMethod3 (Ljava/lang/String;Ljava/lang/String;)Z
│ │ IFEQ L2
│ │ LDC "f"
│ │ GOTO L1
│ │ L2
│ │ LDC "g"
│ │ L1
│ │ ┌─ ALOAD 0
│ │ │ LDC "h"
│ │ │ LDC "i"
│ │ └─ INVOKEVIRTUAL simple/IdentifyCallExample.anotherMethod4 (Ljava/lang/String;Ljava/lang/String;)Z
│ │ IFEQ L3
│ │ LDC "j"
│ │ GOTO L4
│ │ L3
│ │ LDC "k"
│ │ L4
│ └─── INVOKEVIRTUAL simple/IdentifyCallExample.anotherMethod1 (Ljava/lang/String;Ljava/lang/String;)Z
│ IFEQ L5
│ LDC "l"
│ GOTO L6
│ L5
│ LDC "m"
│ L6
└───── INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V
RETURN
Когда мы хотим поддержать более сложные выражения-получатели или static
методы, первый аргумент которых может быть произвольным выражением, усложняются. Frame<SourceValue>
позволяет нам идентифицировать инструкции, которые помещают текущие значения в стек операндов, но в случае выражения, подобного a + b
, это будет только инструкция iadd
, и мы должны проанализировать инструкцию iadd
кадр, чтобы получить свои входы. Вместо того, чтобы реализовывать это для каждого вида инструкций, проще расширить интерпретатор, получить информацию и сохранить ее, например, в Map
, так как Analyzer
уже проделал эту работу. Затем мы можем рекурсивно собрать все входные данные.
Но это обеспечивает только прямые и косвенные источники входных данных, но в случае условных выражений нам также нужны входные данные для условия. Для этого нам нужно идентифицировать и хранить условные ветки. Всякий раз, когда сообщается, что ввод потенциально происходит из разных инструкций источника, мы должны проверить соответствующие ветви и добавить их условия.
Затем мы снова используем упрощающее предположение, что все инструкции между первой и последней также принадлежат выражение вызова.
Более сложный код выглядит как
public class IdentifyCall {
private final InsnList instructions;
private final Map<AbstractInsnNode, Set<SourceValue>> sources;
private final TreeMap<int[],AbstractInsnNode> conditionals;
private IdentifyCall(InsnList il,
Map<AbstractInsnNode, Set<SourceValue>> s, TreeMap<int[], AbstractInsnNode> c) {
instructions = il;
sources = s;
conditionals = c;
}
Set<AbstractInsnNode> getAllInputsOf(AbstractInsnNode instr) {
Set<AbstractInsnNode> source = new HashSet<>();
List<SourceValue> pending = new ArrayList<>(sources.get(instr));
for (int pIx = 0; pIx < pending.size(); pIx++) {
SourceValue sv = pending.get(pIx);
final boolean branch = sv.insns.size() > 1;
for(AbstractInsnNode in: sv.insns) {
if(source.add(in))
pending.addAll(sources.getOrDefault(in, Collections.emptySet()));
if(branch) {
int ix = instructions.indexOf(in);
conditionals.forEach((b,i) -> {
if(b[0] <= ix && b[1] >= ix && source.add(i))
pending.addAll(sources.getOrDefault(i, Collections.emptySet()));
});
}
}
}
return source;
}
static IdentifyCall getInputs(
String internalClassName, MethodNode toAnalyze) throws AnalyzerException {
InsnList instructions = toAnalyze.instructions;
Map<AbstractInsnNode, Set<SourceValue>> sources = new HashMap<>();
SourceInterpreter i = new SourceInterpreter() {
@Override
public SourceValue unaryOperation(AbstractInsnNode insn, SourceValue value) {
sources.computeIfAbsent(insn, x -> new HashSet<>()).add(value);
return super.unaryOperation(insn, value);
}
@Override
public SourceValue binaryOperation(AbstractInsnNode insn, SourceValue v1, SourceValue v2) {
addAll(insn, Arrays.asList(v1, v2));
return super.binaryOperation(insn, v1, v2);
}
@Override
public SourceValue ternaryOperation(AbstractInsnNode insn, SourceValue v1, SourceValue v2, SourceValue v3) {
addAll(insn, Arrays.asList(v1, v2, v3));
return super.ternaryOperation(insn, v1, v2, v3);
}
@Override
public SourceValue naryOperation(AbstractInsnNode insn, List<? extends SourceValue> values) {
addAll(insn, values);
return super.naryOperation(insn, values);
}
private void addAll(AbstractInsnNode insn, List<? extends SourceValue> values) {
sources.computeIfAbsent(insn, x -> new HashSet<>()).addAll(values);
}
};
TreeMap<int[],AbstractInsnNode> conditionals = new TreeMap<>(
Comparator.comparingInt((int[] a) -> a[0]).thenComparingInt(a -> a[1]));
Analyzer<SourceValue> analyzer = new Analyzer<>(i) {
@Override
protected void newControlFlowEdge(int insn, int successor) {
if(insn != successor - 1) {
AbstractInsnNode instruction = instructions.get(insn);
Set<SourceValue> dep = sources.get(instruction);
if(dep != null && !dep.isEmpty())
conditionals.put(new int[]{ insn, successor }, instruction);
}
}
};
analyzer.analyze(internalClassName, toAnalyze);
return new IdentifyCall(instructions, sources, conditionals);
}
}
Затем мы также используем более сложный пример кода:
public class IdentifyCallExample {
private void toAnalyze() {
(Math.random()>0.5? System.out: System.err).println(
anotherMethod1(
anotherMethod2("a", "b") ?
"c" : anotherMethod3("d", "e") ? "f" : "g",
anotherMethod4("h", "i") ? "j" : "k"
) ? "l" : "m"
);
}
static boolean anotherMethod1(String str, String oof) {
return true;
}
static boolean anotherMethod2(String str, String oof) {
return true;
}
static boolean anotherMethod3(String str, String oof) {
return true;
}
static boolean anotherMethod4(String str, String oof) {
return true;
}
public static void main(String[] args) throws AnalyzerException, IOException {
Class<?> me = MethodHandles.lookup().lookupClass();
ClassReader r = new ClassReader(me.getResourceAsStream(me.getSimpleName()+".class"));
ClassNode cn = new ClassNode();
r.accept(cn, ClassReader.SKIP_DEBUG|ClassReader.SKIP_FRAMES);
MethodNode toAnalyze = null;
for(MethodNode mn: cn.methods)
if(mn.name.equals("toAnalyze")) {
toAnalyze = mn;
break;
}
List<int[]> invocations = new ArrayList<>();
final InsnList instructions = toAnalyze.instructions;
IdentifyCall sources = IdentifyCall.getInputs(me.getName().replace('.', '/'), toAnalyze);
for(int ix = 0, num = instructions.size(); ix < num; ix++) {
AbstractInsnNode instr = instructions.get(ix);
if(instr.getType() != AbstractInsnNode.METHOD_INSN) continue;
IntSummaryStatistics s = sources.getAllInputsOf(instr).stream()
.mapToInt(instructions::indexOf).summaryStatistics();
s.accept(ix);
invocations.add(new int[]{s.getMin(), s.getMax()});
}
printIt(invocations, instructions);
}
// remainder as in the simple variant
, который теперь будет печатать
┌────[ INVOKESTATIC java/lang/Math.random ()D
│ LDC 0.5
│ DCMPL
│ IFLE L0
│ GETSTATIC java/lang/System.out : Ljava/io/PrintStream;
│ GOTO L1
│ L0
│ GETSTATIC java/lang/System.err : Ljava/io/PrintStream;
│ L1
│ ┌─┬─ LDC "a"
│ │ │ LDC "b"
│ │ └─ INVOKESTATIC complex/IdentifyCallExample.anotherMethod2 (Ljava/lang/String;Ljava/lang/String;)Z
│ │ IFEQ L2
│ │ LDC "c"
│ │ GOTO L3
│ │ L2
│ │ ┌─ LDC "d"
│ │ │ LDC "e"
│ │ └─ INVOKESTATIC complex/IdentifyCallExample.anotherMethod3 (Ljava/lang/String;Ljava/lang/String;)Z
│ │ IFEQ L4
│ │ LDC "f"
│ │ GOTO L3
│ │ L4
│ │ LDC "g"
│ │ L3
│ │ ┌─ LDC "h"
│ │ │ LDC "i"
│ │ └─ INVOKESTATIC complex/IdentifyCallExample.anotherMethod4 (Ljava/lang/String;Ljava/lang/String;)Z
│ │ IFEQ L5
│ │ LDC "j"
│ │ GOTO L6
│ │ L5
│ │ LDC "k"
│ │ L6
│ └─── INVOKESTATIC complex/IdentifyCallExample.anotherMethod1 (Ljava/lang/String;Ljava/lang/String;)Z
│ IFEQ L7
│ LDC "l"
│ GOTO L8
│ L7
│ LDC "m"
│ L8
└───── INVOKEVIRTUAL java/io/PrintStream.println (Ljava/lang/String;)V
RETURN
Это может не охватывать все возможные случаи, но может быть достаточным для ваших случаев использования.