Вы можете использовать numpy .argwhere следующим образом:
from sklearn.ensemble import RandomForestClassifier
import numpy as np
model = RandomForestClassifier(n_estimators=300, n_jobs=-1)
model.fit(x_train,y_train)
preds = model.predict_proba(x_test)
#preds = np.array([[0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.0],
# [ 0.2, 0.1, 0.1, 0.3, 0.1, 0.0, 0.2],
# [ 0.1 ,0.1, 0.1, 0.1, 0.1, 0.4, 0.1],
# [ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]])
r = np.zeros(preds.shape[0], dtype=int)
t = np.argwhere(preds>=0.9)
r[t[:,0]] = t[:,1]+1
r
array([4, 0, 0, 1])