Я не могу запустить эту часть логитов ноутбука, и метки должны иметь одно и то же первое измерение, полученную форму логитов [32,1] и форму меток [80000] [[{{node loss_2 / активации_8_loss / SparseSoftmaxCrossEntropyWithLogits / SparseSoftmaxCrossEntropyWithLogits }}]] это продолжается
enter code here import tensorflow as tf
enter code here from tensorflow.keras.datasets import cifar10
enter code here from tensorflow.keras.preprocessing.image import ImageDataGenerator
enter code here from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
import pickle
pickle_in = open("X.pickle","rb")
X = pickle.load(pickle_in)
pickle_in = open("y.pickle","rb")
y = pickle.load(pickle_in)
X = X/255.0
model = Sequential()
model.add(Conv2D(256, (3, 3), input_shape=X.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
# this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['categorical_accuracy'])
model.fit(X, y, batch_size=32, epochs=3, validation_split=0.3)