Модель машинного обучения - PullRequest
0 голосов
/ 07 марта 2020

Итак, я строю модель GRU и сравниваю 3 разных набора данных для одной и той же модели. Я только что запустил первый набор данных и установил число эпох на 25, но я заметил, что моя потеря проверки увеличивается сразу после 6-й эпохи, разве это не указывает на переобучение, я делаю что-то не так? *

enter image description here

import pandas as pd
import tensorflow as tf
from keras.layers.core import Dense
from keras.layers.recurrent import GRU
from keras.models import Sequential
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from google.colab import files
from tensorboardcolab import TensorBoardColab, TensorBoardColabCallback
tbc=TensorBoardColab() # Tensorboard


df10=pd.read_csv('/content/drive/My Drive/Isolation Forest/IF 10 PERCENT.csv',index_col=None)
df2_10= pd.read_csv('/content/drive/My Drive/2019 Dataframe/2019 10minutes IF 10 PERCENT.csv',index_col=None)

X10_train= df10[['WindSpeed_mps','AmbTemp_DegC','RotorSpeed_rpm','RotorSpeedAve','NacelleOrientation_Deg','MeasuredYawError','Pitch_Deg','WindSpeed1','WindSpeed2','WindSpeed3','GeneratorTemperature_DegC','GearBoxTemperature_DegC']]
X10_train=X10_train.values

y10_train= df10['Power_kW']
y10_train=y10_train.values

X10_test= df2_10[['WindSpeed_mps','AmbTemp_DegC','RotorSpeed_rpm','RotorSpeedAve','NacelleOrientation_Deg','MeasuredYawError','Pitch_Deg','WindSpeed1','WindSpeed2','WindSpeed3','GeneratorTemperature_DegC','GearBoxTemperature_DegC']]
X10_test=X10_test.values

y10_test= df2_10['Power_kW']
y10_test=y10_test.values




# scaling values for model


x_scale = MinMaxScaler()
y_scale = MinMaxScaler()

X10_train= x_scale.fit_transform(X10_train)
y10_train= y_scale.fit_transform(y10_train.reshape(-1,1))
X10_test=  x_scale.fit_transform(X10_test)
y10_test=  y_scale.fit_transform(y10_test.reshape(-1,1))


X10_train = X10_train.reshape((-1,1,12)) 
X10_test = X10_test.reshape((-1,1,12))







# creating model using Keras
model10 = Sequential()
model10.add(GRU(units=512, return_sequences=True, input_shape=(1,12)))
model10.add(GRU(units=256, return_sequences=True))
model10.add(GRU(units=256))
model10.add(Dense(units=1, activation='sigmoid'))
model10.compile(loss=['mse'], optimizer='adam',metrics=['mse']) 
model10.summary() 

history10=model10.fit(X10_train, y10_train, batch_size=256, epochs=25,validation_split=0.20, verbose=1, callbacks=[TensorBoardColabCallback(tbc)])


score = model10.evaluate(X10_test, y10_test)
print('Score: {}'.format(score))



y10_predicted = model10.predict(X10_test)
y10_predicted = y_scale.inverse_transform(y10_predicted)

y10_test = y_scale.inverse_transform(y10_test)

plt.plot( y10_predicted, label='Predicted')
plt.plot( y10_test, label='Measurements')
plt.legend()
plt.savefig('/content/drive/My Drive/Figures/Power Prediction 10 Percent.png')
plt.show()

1 Ответ

1 голос
/ 07 марта 2020

LSTM (а также GRU, несмотря на их более легкую конструкцию) известны своей простотой переоснащения.

Уменьшение количества единиц (выходного размера) в каждом из слоев (32 (layer1) -64 ( layer2); вы также можете полностью удалить последний слой.

Во-вторых, вы используете активацию 'sigmoid', но ваша функция потерь + metri c равна mse.

Убедитесь, что ваша проблема либо regression, либо classification. Если это действительно регрессия, то функция активации должна быть 'linear' на последнем шаге. Если это классификационная функция , вы должны изменить свою функцию loss_function на binary_crossentropy, а метри c на 'accuracy'.

Таким образом, отображаемый график на данный момент просто вводит в заблуждение. Если вы измените, как я предложил, и вы по-прежнему Получите такой график потери поезда, тогда мы можем точно сказать, что у вас есть случай переоснащения.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...