Попытка запустить классификацию для набора данных CIFAR-10 с простым CNN. Тем не менее, модель останавливается после завершения первой эпохи и не включается go для завершения всех пяти. Пожалуйста помоги.
ВХОД:
cifar10 = tf.keras.datasets.cifar10
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()
import os
import matplotlib.pyplot as plt
import numpy as np
import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras import optimizers
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing.image import ImageDataGenerator
model = models.Sequential()
# Convolutional base (feature extractor)
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# Deep feed-forward classifier
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc'])
history = model.fit(
x=train_images,
y=train_labels,
steps_per_epoch=100,
epochs=5,
verbose=1,
validation_data=(test_images, test_labels),
validation_steps=50)
ВЫХОД:
Train on 50000 samples, validate on 10000 samples
Epoch 1/5
50000/50000 [==============================] - 28s 564us/sample - loss: 2.1455 - acc: 0.2945 - val_loss: 2.0011 - val_acc: 0.3038