Я пытаюсь преобразовать свой 2D Unet в 3D Unet. Когда код достигает первой свертки, я получаю сообщение об ошибке:
ValueError: A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 42, 42, 2, 256), (None, 43, 43, 2, 256)]
Может кто-нибудь сказать мне, почему формы ввода не совпадают?
Нейронная сеть:
def get_model(optimizer, loss_metric, metrics, lr=1e-3):
inputs = Input((sample_width, sample_height, sample_depth, 1))
conv1 = Conv3D(32, (3, 3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv3D(32, (3, 3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)
drop1 = Dropout(0.5)(pool1)
conv2 = Conv3D(64, (3, 3, 3), activation='relu', padding='same')(drop1)
conv2 = Conv3D(64, (3, 3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)
drop2 = Dropout(0.5)(pool2)
conv3 = Conv3D(128, (3, 3, 3), activation='relu', padding='same')(drop2)
conv3 = Conv3D(128, (3, 3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling3D(pool_size=(2, 2, 2))(conv3)
drop3 = Dropout(0.3)(pool3)
conv4 = Conv3D(256, (3, 3, 3), activation='relu', padding='same')(drop3)
conv4 = Conv3D(256, (3, 3, 3), activation='relu', padding='same')(conv4)
pool4 = MaxPooling3D(pool_size=(2, 2, 2))(conv4)
drop4 = Dropout(0.3)(pool4)
conv5 = Conv3D(512, (3, 3, 3), activation='relu', padding='same')(drop4)
conv5 = Conv3D(512, (3, 3, 3), activation='relu', padding='same')(conv5)
up6 = concatenate([Conv3DTranspose(256, (2, 2, 2), strides=(2, 2, 2), padding='same')(conv5), conv4], axis=3)
conv6 = Conv3D(256, (3, 3, 3), activation='relu', padding='same')(up6)
conv6 = Conv3D(256, (3, 3, 3), activation='relu', padding='same')(conv6)
up7 = concatenate([Conv3DTranspose(128, (2, 2, 2), strides=(2, 2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv3D(128, (3, 3, 3), activation='relu', padding='same')(up7)
conv7 = Conv3D(128, (3, 3, 3), activation='relu', padding='same')(conv7)
up8 = concatenate([Conv3DTranspose(64, (2, 2, 2), strides=(2, 2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv3D(64, (3, 3, 3), activation='relu', padding='same')(up8)
conv8 = Conv3D(64, (3, 3, 3), activation='relu', padding='same')(conv8)
up9 = concatenate([Conv3DTranspose(32, (2, 2, 2), strides=(2, 2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv3D(32, (3, 3, 3), activation='relu', padding='same')(up9)
conv9 = Conv3D(32, (3, 3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv3D(1, (1, 1, 1), activation='sigmoid')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
model.compile(optimizer=optimizer(lr=lr), loss=loss_metric, metrics=metr
ектронное)