Я хотел бы использовать Pytorch для создания двоичного классификатора. Тем не менее, у меня появляется сообщение об ошибке "несоответствие размера, m1: [13900 x 2], м2: [4 x 1]
Ниже кода, который я пытаюсь запустить.
iris=np.load(path_iris)
X_train=iris['train_X']
Y_train=iris['train_Y']
X_test=iris['test_X']
Y_test=iris['test_Y']
print(f'X train size: {X_train.shape}')
print(f'X test size: {Y_train.shape}')
print(f'y train size: {X_test.shape}')
print(f'y test size: {Y_test.shape}')
X размер поезда: (120, 4) X размер теста: (120,) y размер поезда: (30, 4) y размер теста: (30,)
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
class network():
def __init__(self, X, Y, n_hidden=1, learning_rate=1e-2, device='cpu'):
self.device = device
self.X = X
self.Y = Y.reshape(-1,1)
self.Y_t = torch.FloatTensor(self.Y).to(device=self.device)
self.n_input_dim = X.shape[1]
self.n_output = 1
self.learning_rate = learning_rate
self.n_hidden = n_hidden
# Build network
self.net = nn.Sequential(
nn.Linear(self.n_input_dim, self.n_hidden),
nn.ELU(),
nn.Linear(self.n_hidden, self.n_hidden),
nn.ELU(),
nn.Linear(self.n_hidden, self.n_output),
nn.Sigmoid())
self.loss_func = nn.BCELoss()
self.optimizer = torch.optim.SGD(self.net.parameters(),
lr=self.learning_rate)
def predict(self, X):
# Function to generate predictions based on data
X_t = torch.FloatTensor(X).to(device=self.device)
return self.net(X_t)
def calculate_loss(self, y_hat):
return self.loss_func(y_hat, self.Y_t)
def update_network(self, y_hat):
self.optimizer.zero_grad()
loss = self.calculate_loss(y_hat)
loss.backward()
self.optimizer.step()
self.training_loss.append(loss.item())
def calculate_accuracy(self, y_hat_class, Y):
return np.sum(Y.reshape(-1,1)==y_hat_class) / len(Y)
def train(self, n_iters=1000):
self.training_loss = []
self.training_accuracy = []
for i in range(n_iters):
y_hat = self.predict(X_train)
self.update_network(y_hat)
y_hat_class = np.where(y_hat<0.5, 0, 1)
accuracy = self.calculate_accuracy(y_hat_class, self.Y)
self.training_accuracy.append(accuracy)
def plot_training_results(self):
fig, ax = plt.subplots(2, 1, figsize=(12,8))
ax[0].plot(self.training_loss)
ax[0].set_ylabel('Loss')
ax[0].set_title('Training Loss')
ax[1].plot(self.training_accuracy)
ax[1].set_ylabel('Classification Accuracy')
ax[1].set_title('Training Accuracy')
plt.tight_layout()
plt.show()
def plot_testing_results(self, X_test, Y_test):
# Pass test data
y_hat_test = self.predict(X_test)
y_hat_test_class = np.where(y_hat_test<0.5, 0, 1)
print("Test Accuracy {:.2f}%".format(
self.calculate_accuracy(y_hat_test_class, Y_test) * 100))
# Plot the decision boundary
# Determine grid range in x and y directions
x_min, x_max = X_train[:, 0].min()-0.1, X_train[:, 0].max()+0.1
y_min, y_max = X_train[:, 1].min()-0.1, X_train[:, 1].max()+0.1
# Set grid spacing parameter
spacing = min(x_max - x_min, y_max - y_min) / 100
# Create grid
XX, YY = np.meshgrid(np.arange(x_min, x_max, spacing),
np.arange(y_min, y_max, spacing))
# Concatenate data to match input
data = np.hstack((XX.ravel().reshape(-1,1),
YY.ravel().reshape(-1,1)))
# Pass data to predict method
db_prob = self.predict(data)
clf = np.where(db_prob<0.5,0,1)
Z = clf.reshape(XX.shape)
plt.figure(figsize=(12,8))
plt.contourf(XX, YY, Z, cmap=plt.cm.Accent, alpha=0.5)
plt.scatter(X_test[:,0], X_test[:,1], c=Y_test,
cmap=plt.cm.Accent)
plt.show()
net = network(X_train, Y_train)
print(net.net)
net.train()
n_hidden_nodes = range(1,10)
for n in n_hidden_nodes:
print("Number of hidden nodes: {:d}".format(n))
net = network(X_train, Y_train, n_hidden=n)
net.train()
net.plot_testing_results(X_test, Y_test)
Как я могу изменить код убрать ошибку? Спасибо большое.