во внутренней переменной l oopj
начинается со значения 2, и затем у вас есть оператор if, который всегда True
, потому что j%2==0
всегда 2%2==0
, что всегда True
, поэтому вы всегда break
с первого шага внутренней for
l oop итерации
вы можете использовать:
import math
k=int(input())
res=[]
for i in range(2, k+1):
for x in range(2, int(math.sqrt(i) + 1)):
if i % x == 0 :
break
else:
res.append(i)
# k = 20
вывод:
[2, 3, 5, 7, 11, 13, 17, 19]
для эффективного заправки поколение, вы можете использовать сито Эратосфена:
# Sieve of Eratosthenes
# Code by David Eppstein, UC Irvine, 28 Feb 2002
# http://code.activestate.com/recipes/117119/
def _gen_primes():
""" Generate an infinite sequence of prime numbers.
"""
# Maps composites to primes witnessing their compositeness.
# This is memory efficient, as the sieve is not "run forward"
# indefinitely, but only as long as required by the current
# number being tested.
#
D = {}
# The running integer that's checked for primeness
q = 2
while True:
if q not in D:
# q is a new prime.
# Yield it and mark its first multiple that isn't
# already marked in previous iterations
#
yield q
D[q * q] = [q]
else:
# q is composite. D[q] is the list of primes that
# divide it. Since we've reached q, we no longer
# need it in the map, but we'll mark the next
# multiples of its witnesses to prepare for larger
# numbers
#
for p in D[q]:
D.setdefault(p + q, []).append(p)
del D[q]
q += 1
k=int(input())
def gen_primes(k):
gp = _gen_primes()
p = next(gp)
while p < k:
yield p
p = next(gp)
res = list(gen_primes(k))