Я новичок в CNN. Я пытался обучить свою модель на наборе данных CIFAR10. Я использовал концепцию трансферного обучения, где моей базовой моделью является Inception-V3, а мой выходной слой имеет 10 узлов. Поэтому я использовал softmax для выполнения решения о классификации. Мой кусок кода таков, и проблема в том, что он приносит мне нано как потерю. Я не могу определить проблемы, связанные с кодом. Я думал о нормализации. Но функция ImageDataGenerator () уже выполняет нужную задачу. Любая помощь приветствуется.
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K
from keras.datasets import cifar10
from keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = to_categorical(y_train)
y_test=to_categorical(y_test)
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(10, activation='softmax')(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
datagen=ImageDataGenerator(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
datagen.fit(x_train)
# train the model on the new data for a few epochs
model.fit_generator(datagen.flow(x_train,y_train,batch_size=128), steps_per_epoch=len(x_train)/128,epochs=10)
# at this point, the top layers are well trained and we can start fine-tuning
# convolutional layers from inception V3. We will freeze the bottom N layers
# and train the remaining top layers.
# let's visualize layer names and layer indices to see how many layers
# we should freeze:
for i, layer in enumerate(base_model.layers):
print(i, layer.name)
# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 249 layers and unfreeze the rest:
for layer in model.layers[:249]:
layer.trainable = False
for layer in model.layers[249:]:
layer.trainable = True
# we need to recompile the model for these modifications to take effect
# we use SGD with a low learning rate
from keras.optimizers import SGD
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy')
# we train our model again (this time fine-tuning the top 2 inception blocks
# alongside the top Dense layers
model.fit_generator(datagen.flow(x_train,y_train,batch_size=128), steps_per_epoch=len(x_train)/128,epochs=10)`