Py4JJavaError: Произошла ошибка при вызове o1670.collectToPython - PullRequest
0 голосов
/ 23 апреля 2020

Я пытаюсь преобразовать искровой RDD в Pandas DataFrame.

В качестве примера я использую CSV-файл. В файле 10 первых строк:

"Eldon Base для стекируемой полки для хранения, платина", Мухаммед Макинтайр, 3, -213.25,38.94,35, Nunavut, Storage & Organization, 0.8

"1.7 Cubi c Foot Compact" "Cube" "Офисные холодильники", Барри Френч, 293 457,81 208,16,82, Nunavut, Appliances, 0,58

"Cardinal Slant-D� Ring Binder, Heavy Gauge Vinyl ", Барри Френч, 293,46.71,8.69,2.99, Нунавут, переплеты и аксессуары для переплета, 0.39

Мой код здесь:

import pandas as pd
import pyspark
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("HelloWorld").getOrCreate()
sc = spark.sparkContext


from pyspark.sql.types import StructType
from pyspark.sql.types import StructField
from pyspark.sql.types import StringType
from pyspark.sql.context import SQLContext

schema = StructType([StructField(str(i), StringType(), True) for i in range(10)])

text = sc.textFile('data_53000kb.csv')
text = text.map(lambda x: [c.strip() for c in x.split(',')])
df = spark.createDataFrame(text, schema)
df.toPandas()

на данный момент я получаю следующее ошибка:

Py4JJavaError: An error occurred while calling o1670.collectToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 40.0 failed 1 times, most recent failure: Lost task 0.0 in stage 40.0 (TID 72, localhost, executor driver): java.net.SocketException: Connection reset by peer: socket write error
    at java.net.SocketOutputStream.socketWrite0(Native Method)
    at java.net.SocketOutputStream.socketWrite(Unknown Source)
    at java.net.SocketOutputStream.write(Unknown Source)
    at java.io.BufferedOutputStream.flushBuffer(Unknown Source)
    at java.io.BufferedOutputStream.write(Unknown Source)
    at java.io.DataOutputStream.write(Unknown Source)
    at java.io.FilterOutputStream.write(Unknown Source)
    at org.apache.spark.api.python.PythonRDD$.writeUTF(PythonRDD.scala:394)
    at org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:214)
    at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
    at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
    at scala.collection.Iterator$class.foreach(Iterator.scala:891)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
    at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
    at org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:561)
    at org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:346)
    at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
    at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:195)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1891)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1879)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1878)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:927)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2112)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2061)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2050)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:738)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:990)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:385)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:989)
    at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:299)
    at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3263)
    at org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:3260)
    at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3370)
    at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
    at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:3260)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
    at java.lang.reflect.Method.invoke(Unknown Source)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketException: Connection reset by peer: socket write error
    at java.net.SocketOutputStream.socketWrite0(Native Method)
    at java.net.SocketOutputStream.socketWrite(Unknown Source)
    at java.net.SocketOutputStream.write(Unknown Source)
    at java.io.BufferedOutputStream.flushBuffer(Unknown Source)
    at java.io.BufferedOutputStream.write(Unknown Source)
    at java.io.DataOutputStream.write(Unknown Source)
    at java.io.FilterOutputStream.write(Unknown Source)
    at org.apache.spark.api.python.PythonRDD$.writeUTF(PythonRDD.scala:394)
    at org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:214)
    at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
    at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
    at scala.collection.Iterator$class.foreach(Iterator.scala:891)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
    at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
    at org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:561)
    at org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:346)
    at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
    at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:195)

Что мне теперь делать?

1 Ответ

0 голосов
/ 23 апреля 2020

df.to Pandas () собирает все данные на узел драйвера, поэтому это очень дорогая операция. Также есть свойство spark, называемое maxResultSize

spark.driver.maxResultSize (по умолчанию 1G) -> Предел общего размера сериализованных результатов всех разделов для каждого действия Spark (например, сбор) в байтах. Должно быть не менее 1М или 0 для неограниченного. Задания будут прерваны, если общий размер превысит этот предел. Высокий предел может вызвать ошибки нехватки памяти в драйвере (зависит от spark.driver.memory и нехватки памяти объектов в JVM). Установка правильного предела может защитить драйвер от ошибок нехватки памяти.

Если предполагаемый размер данных больше, чем maxResultSize, данное задание будет прервано. Цель здесь - защитить ваше приложение от потери драйвера, не более того.

Возможно, вам потребуется увеличить maxResultSize

...