Каков наилучший способ предоставления пользовательского интерфейса чатботу python? - PullRequest
0 голосов
/ 02 апреля 2020

Я создал чат-бота, используя Python и TensorFlow. Он работает нормально, и у меня есть готовый файл py, но как мне дать ему интерфейс. Я хочу запустить его как веб-приложение. Как это сделать? Это, наверное, очень глупый вопрос для многих из вас. Заранее спасибо Вот код для чат-бота на всякий случай

import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()

import numpy
import tflearn
import tensorflow
import random
import json
import pickle

with open("intents.json") as file:
        data = json.load(file)



try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except:
    words = []
    labels = []
    docs_x = []
    docs_y = []

    for intent in data["intents"]:
        for pattern in intent["patterns"]:
            wrds = nltk.word_tokenize(pattern)
            words.extend(wrds)
            docs_x.append(wrds)
            docs_y.append(intent["tag"])

        if intent["tag"] not in labels:
            labels.append(intent["tag"])

    words = [stemmer.stem(w.lower()) for w in words if w != "?"]
    words = sorted(list(set(words)))

    labels = sorted(labels)

    training = []
    output =[]

    out_empty = [0 for _ in range(len(labels))]

    for x, doc in enumerate(docs_x):
        bag = []

        wrds = [stemmer.stem(w) for w in doc]

        for w in words:
            if w in wrds:
                bag.append(1)
            else:
                bag.append(0)

        output_row = out_empty[:]
        output_row[labels.index(docs_y[x])] = 1

        training.append(bag)
        output.append(output_row)

    training = numpy.array(training)
    output = numpy.array(output)

    with open("data.pickle", "wb") as f:
        pickle.dump((words, labels, training, output), f)


tensorflow.reset_default_graph()

net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

model = tflearn.DNN(net)

try:
    model.load("model.tflearn")
except:
    model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
    model.save("model.tflearn")

def bag_of_words(s,cwords):
    bag = [0 for _ in range(len(words))]

    s_words = nltk.word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words]

    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1

    return numpy.array(bag)

def chat():
    print("Start talking to the goddamn bot!")
    while True:
        inp = input("You: ")
        if inp.lower() == "quit":
            break

        results = model.predict([bag_of_words(inp, words)])
        results_index = numpy.argmax(results)
        tag = labels[results_index]

        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']

        print(random.choice(responses))

chat()

1 Ответ

0 голосов
/ 02 апреля 2020

Думайте о своем текущем коде как о модуле python, который вы можете импортировать в другой файл python, и вызовите один его метод для получения логического вывода. Для этого вы можете попробовать поместить его в класс.

После этого у вас есть несколько вариантов. Если вы хотите сохранить Python, вы можете использовать Flask или Django, чтобы создать для него свой веб-слой.

...