При попытке использовать Tweepy API появляется следующее сообщение об ошибке: «ImportError: сбой загрузки DLL: указанный модуль не найден». - PullRequest
0 голосов
/ 16 февраля 2020

Вот код:

 from tweepy.streaming import StreamListener
# oauth handler deals with the authentication
from tweepy import OAuthHandler
from tweepy import Stream
import twitter_credentials
from tweepy import API
from tweepy import Cursor
import matplotlib.pyplot as plt


import twitter_credentials
import numpy as np   
import pandas as pd

# # # # Twitter Client # # # # 

class TwitterClient():
    def __init__(self, twitter_user = None):
        self.auth = TwitterAuthenticator().aunthenticate_twitter_app()
        self.twitter_client = API(self.auth)

        # allow to specify user
        self.twitter_user = twitter_user

    def get_twitter_client_api(self):
        return self.twitter_client

    def get_user_timeline_tweeets(self, num_tweets):
        tweets = []
        for tweet in Cursor(self.twitter_client.user_timeline, id = self.twitter_user).items(num_tweets):
            tweets.append(tweet)
        return tweets 
    def get_friend_list(self, num_friends):
        friend_list = []
        for friend in Cursor(self.twitter_client.friends, id = self.twitter_user).items(num_friends):
            friend_list.append(friend)
        return friend_list
    def get_home_timeline_tweets(self, num_tweets):
        home_timeline_tweets = []
        for tweet in Cursor(self.twitter_client.home_timeline, id = self.twitter_user).items(num_tweets):
            home_timeline_tweets.append(tweet)
        return home_timeline_tweets

# # # # TWITTER AUTHENTICATOR # # # #
class TwitterAuthenticator():

    def aunthenticate_twitter_app(self):
        auth = OAuthHandler(twitter_credentials.CONSUMER_KEY, twitter_credentials.CONSUMER_SECRET)
        auth.set_access_token(twitter_credentials.ACCESS_TOKEN, twitter_credentials.ACCESS_TOKEN_SECRET)
        return auth

 # # # # TWITTER STREAMER # # # #

class TwitterStreamer():
# class for streaming and processing live tweets
    def __init__(self):
        self.twitter_authenticator = TwitterAuthenticator()

    def stream_tweets(self, fetched_tweets_filename, hash_tag_list):
        listener = TwitterListener(fetched_tweets_filename)
        auth = self.twitter_authenticator.aunthenticate_twitter_app()
        stream = Stream(auth, listener)

        stream.filter(track = hash_tag_list)

class TwitterListener(StreamListener):
    """
    Basic listener class that just prints receieved textst stdout
    """
    def __init__(self, fetched_tweets_filename):
        self.fetched_tweets_filename = fetched_tweets_filename
    def on_data(self, data):
        try:
            print(data)
            with open(self.fetched_tweets_filename, 'a') as tf:
                tf.write(data)  
            return True 
        except BaseException as e:
            print("error on_data: %s" %str(e))
        return True

    def on_error(self, status):
        # certain twitter errors, like 420, create a cooldown time that grows exponentially the more you do it, we don't want these errors
        if status == 420:
            return False
        print(status)

class TweetAnalyzer():
    '''
    Function for analyzing and cateogrizing tweet information
    ''' 
    def tweets_to_data_frame(self, tweets):

        df = pd.DataFrame(data = [tweet.text for tweet in tweets], columns = ['Tweets']) 

        df['id'] = np.array([tweet.id for tweet in tweets])
        df['len'] = np.array([len(tweet.text) for tweet in tweets])
        df['date'] = np.array([tweet.created_at for tweet in tweets])
        df['source'] = np.array([tweet.source for tweet in tweets])
        df['likes'] = np.array([tweet.favorite_count for tweet in tweets])
        df['retweet'] = np.array([tweet.retweet_count for tweet in tweets])

        return df 

if __name__ == "__main__":
    twitter_client = TwitterClient()
    tweet_analyzer = TweetAnalyzer()

    api = twitter_client.get_twitter_client_api()
    tweets = api.user_timeline(screen_name = "realDonaldTrump", count = 200)
    df = tweet_analyzer.tweets_to_data_frame(tweets)

    # print(dir(tweets))
    # print(df.head(10))

    # np is the numoy command and df is a data frame, which is an array of arrays 
    print(np.mean(df['len']))

    #get the num of likes for the most liked tweet
    print(np.max(df['likes']))  

    # get the earliest date of the tweet
    print(np.min(df['date']))

    #get the number of retweets of the most retweeted
    print(np.max(df['retweet'])) 

    #visualize the data 
    # time series object to plot
    # time_likes = pd.Series(data = df['likes'].values, index = df['date'])
    # time_likes.plot(figsize = (16,4), color = 'r')
    # plt.show()

    #date vs retweets
    # time_retweets = pd.Series(data = df['retweet'].values, index = df['date'])
    # time_retweets.plot(figsize = (16,4), color = 'r')
    # plt.show()

    #plotting both on the same graph 
    time_retweets = pd.Series(data = df['retweet'].values, index = df['date'])
    time_retweets.plot(figsize = (16,4), label = "retweets", legend = True)

    time_likes = pd.Series(data = df['likes'].values, index = df['date'])
    time_likes.plot(figsize = (16,4), label = "likes", legend = True)

    plt.show()

Почему я получаю следующую ошибку:

Traceback (последний вызов был последним): Файл "c: / Users / Gokul / Desktop / NLP Stuff / .vscode / TwitterStuff / tweepy_streamer.py ", строка 1, из файла tweepy.streaming import из файла StreamListener" C: \ Users \ Gokul \ Anaconda3 \ lib \ site-packages \ tweepy__init __. Py ", строка 18, из потока импорта tweepy.streaming, файл StreamListener" C: \ Users \ Gokul \ Anaconda3 \ lib \ site-packages \ tweepy \ streaming.py ", строка 13, в файле импорта ssl" C: \ Users \ Gokul \ Anaconda3 \ lib \ ssl.py ", строка 98, в import _ssl #, если мы не можем импортировать его, разрешить распространению ошибки ImportError: Ошибка загрузки DLL: указанный модуль не найден.

...