Как я могу запустить скрипт на нескольких папках - PullRequest
1 голос
/ 22 января 2020

Я разработал скрипт для выполнения операций и графики для файлов температуры и осадков и прогнозов. У меня есть 3 станции, на которых мне придется делать одни и те же шаги, вот часть скрипта, которая меняет название станции в текстовом имени файла и CSV. Мой вопрос: как запустить скрипт на 3 папках и сохранить каждый номер для каждой станции одновременно

Это скрипт:

У меня 3 папки C: / Users / majd / Documents / l C: / Users / majd / Documents / P C: / Users / majd / Documents / V

В 3 папках у меня есть 3 файла:

Для станции 3 те же файлы

Как Я могу запустить скрипт для 3-х папок одновременно и сохранить рисунок, используя ggplot для 3-х станций одновременно

library(ggplot2)
laval <- ggplot(CIP, aes(x=an, y=value, col=variable)) + geom_line()+xlab('Années') +

laval + scale_x_continuous(name="Années", limits=c(1988, 2006)) +
  scale_y_continuous(name="", limits=c(12.5, 17))

ggsave("L.png", width = 11, height = 8)

1 Ответ

1 голос
/ 22 января 2020

Вы можете создать функцию с помощью уже созданного вами сценария, а затем применить его к вектору, содержащему каталоги, в которых находятся файлы. Внутри функции имена файлов, которые будут использоваться, можно искать как файлы, которые соответствуют определенному шаблону, используя list.files. Наконец, вам просто нужно сохранить ggplot в правильном каталоге и назвать файл именем станции. Вот ваш код с изменениями, которые я сделал. Я прокомментировал все части, где я не внес изменений, чтобы было легче следовать. Надеюсь, что это работает!

#Added two libraries
library(stringr)
library(ggplot2)

my_function<-function(dirs)
{
  #apply the same function for all the entries in the dirs vector
  sapply(dirs, function(workd){
    #Locate the file inside each directory that has "CNRM" and is a txt file
    CNRM_location<-list.files(path = workd, 
                              pattern = glob2rx("*CNRM*4.5*.txt"),
                              full.names = T)
    #read that file
    REF_CNRM <- read.table(CNRM_location, header=TRUE,dec=".",sep=" ", encoding="UTF-8")

    # summary(REF_CNRM)
    # 
    # colnames(REF_CNRM)[1] <-"date"
    # colnames(REF_CNRM)[4] <-"Tasmin"
    # colnames(REF_CNRM)[5] <-"Tasmax"
    # colnames(REF_CNRM)[6] <-"Pre"
    # colnames(REF_CNRM)[7] <-"Neige"
    # 
    # 
    # REF_CNRM$date <- as.Date(as.character(REF_CNRM$date), format = "%Y%m%d")
    # REF_CNRM$year <- year(ymd(REF_CNRM$date))
    # REF_CNRM$month <- month(ymd(REF_CNRM$date)) 
    # REF_CNRM$day <- day(ymd(REF_CNRM$date))
    # REF_CNRM<- REF_CNRM[,c(8,9,10,1,2,3,4,5,6,7)]
    # REF_CNRM <- REF_CNRM[,-4]
    # 
    # REF_CNRM = subset(REF_CNRM,REF_CNRM$year>1970)
    # REF_CNRM = subset(REF_CNRM,REF_CNRM$year<2006)
    # REF_CNRM = subset(REF_CNRM,REF_CNRM$month>3)
    # REF_CNRM = subset(REF_CNRM,REF_CNRM$month<10)
    # summary(REF_CNRM)
    # #convert to celecius
    # 
    # REF_CNRM$Tasmoy = (REF_CNRM$Tasmin+REF_CNRM$Tasmax)/2
    # Tasmoy <- convert.temperature(from="K", to="C",REF_CNRM$Tasmoy)
    # REF_CNRM <- cbind(REF_CNRM,Tasmoy)
    # REF_CNRM <- REF_CNRM[,-10]
    # CNRM = aggregate(REF_CNRM[,10],FUN=mean,by=list(REF_CNRM$year))
    # 
    # #precipitation moyenne annuelle 
    # 
    # CNRM_Pre = aggregate(REF_CNRM[,8],FUN=mean,by=list(REF_CNRM$year))


    # DAta IPSL
    #Locate the file inside each directory that has "IPSL" and is a txt file
    IPSL_location<-list.files(path = workd, 
                              pattern = glob2rx("*IPSL*4.5*.txt"),
                              full.names = T)
    #read that file
    REF_IPSL <- read.table(IPSL_location,header=TRUE,dec=".",sep=" ")

    # summary(REF_IPSL)
    # 
    # colnames(REF_IPSL)[1] <-"date"
    # colnames(REF_IPSL)[4] <-"Tasmin"
    # colnames(REF_IPSL)[5] <-"Tasmax"
    # colnames(REF_IPSL)[6] <-"Pre"
    # #colnames(REF_IPSL)[7] <-"Neige"
    # 
    # #Date 
    # REF_IPSL$date <- as.Date(as.character(REF_IPSL$date), format = "%Y%m%d")
    # REF_IPSL$year <- year(ymd(REF_IPSL$date))
    # REF_IPSL$month <- month(ymd(REF_IPSL$date)) 
    # REF_IPSL$day <- day(ymd(REF_IPSL$date))
    # REF_IPSL<- REF_IPSL[,c(7,8,9,1,2,3,4,5,6)]
    # REF_IPSL <- REF_IPSL[,-4]
    # 
    # REF_IPSL = subset(REF_IPSL,REF_IPSL$year>1970)
    # REF_IPSL = subset(REF_IPSL,REF_IPSL$year<2006)
    # REF_IPSL = subset(REF_IPSL,REF_IPSL$month>3)
    # REF_IPSL= subset(REF_IPSL,REF_IPSL$month<10)
    # summary(REF_IPSL)
    # #convert to celecius
    # REF_IPSL$Tasmoy=(REF_IPSL$Tasmin+REF_IPSL$Tasmax)/2
    # Tasmoy <- convert.temperature(from="K", to="C",REF_IPSL$Tasmoy)
    # REF_IPSL <- cbind(REF_IPSL,Tasmoy)
    # REF_IPSL <- REF_CNRM[,-9]
    # IPSL = aggregate(REF_IPSL[,9],FUN=mean,by=list(REF_IPSL$year))
    # 
    # #precipitation moyenne annuelle IPSL
    # IPSL_Pre = aggregate(REF_IPSL[,8],FUN=mean,by=list(REF_IPSL$year))


    # Données d'observations Laval
    #Locate the file inside each directory that is a csv
    Station_location<-list.files(path = workd, 
                                 pattern = glob2rx("*.csv"),
                                 full.names = T)
    #Read the file
    obs <- read.table(Station_location,header=TRUE,sep=";",dec=",", skip=3)

    #This is for extracting the name of the station, so you can save the plot with
    #that name
    Station_name<-list.files(path = workd, 
                             pattern = glob2rx("*.csv"),
                             full.names = F)
    #Remove the ".csv" part and stay only with the Station name
    Station_name <- strsplit(Station_name,".csv")[[1]][1]

    # summary(obs)
    # colnames(obs)[2] <-"an"
    # colnames(obs)[3] <-"mois"
    # colnames(obs)[5] <-"Tasmax"
    # colnames(obs)[6] <-"Tasmin"
    # colnames(obs)[7] <-"Tasmoy"
    # colnames(obs)[8] <-"Pre"
    # summary(obs)
    # obs = subset(obs,obs$an>1970)
    # obs = subset(obs,obs$an<2006)
    # obs = subset(obs,obs$mois>3)
    # obs = subset(obs,obs$mois<11)
    # summary(obs)
    # OBS = aggregate(obs[,7],FUN=mean,by=list(obs$an))
    # 
    # #precipitation mean  IPSL
    # 
    # obs_Pre = aggregate(obs[,8],FUN=mean,by=list(obs$an))
    # 
    # 
    # #merge temperature 
    # 
    # CNRM_IPSL = merge(CNRM,IPSL, by="Group.1")
    # CNRM_IPSL_obs=merge(CNRM_IPSL,OBS, by ="Group.1")
    # colnames(CNRM_IPSL_obs)[1] <-"an"
    # colnames(CNRM_IPSL_obs)[2] <-"CNRM"
    # colnames(CNRM_IPSL_obs)[3] <-"IPSL"

    #Paste the station name with "OBS_" to rename the column 4
    colnames(CNRM_IPSL_obs)[4] <- paste0("OBS_",Station_name)

    # CNRMIPSL <- reshape2::melt(CNRM_IPSL_obs, id.var='an')
    # library(ggplot2)
    # laval <- ggplot(CNRMIPSL, aes(x=an, y=value, col=variable)) + geom_line()+xlab('Années') +
    #   ylab('Température Moyenne (°C)') 
    # laval + scale_x_continuous(name="Années", limits=c(1988, 2006)) +
    #   scale_y_continuous(name="Température Moyenne (°C)", limits=c(12.5, 17))

    #Finally save the plot to the directory using the station name
    ggsave(paste0(workd,"/",Station_name,"_CNRM_IPSL.png"), width = 11, height = 8)
  })

}

#Set the directories where you want to apply your function
station_directories<-c("C:/Users/majd/Documents/laval",
                       "C:/Users/majd/Documents/Paris",
                       "C:/Users/majd/Documents/Toulouse")

#Apply your function
my_function(station_directories)
...