Я уверен, что вы сможете мне помочь. У меня есть это df:
time power hr fr VE VO2 VCO2 PETCO2 VES QC IC WCI RVSi RVS VTD FE id training
1 00:15 25 92 23 23 0.777 0.677 39.66 86.0 7.8 3.9 4.7 1819 901 137.5 62.7 AC12-PRD-C1 linear
2 00:30 25 90 22 23 0.744 0.680 39.08 92.4 8.5 4.2 5.1 1657 821 146.4 63.1 AC12-PRD-C1 linear
3 00:46 25 86 21 25 0.761 0.728 38.76 91.4 8.3 4.1 5.0 1709 846 149.6 61.1 AC12-PRD-C1 linear
4 01:00 25 87 25 20 0.674 0.583 39.67 84.8 7.5 3.7 4.5 1890 936 138.6 61.3 AC12-PRD-C1 linear
5 01:15 40 93 25 23 0.808 0.689 39.00 86.0 7.7 3.8 4.6 1832 907 146.4 58.8 AC12-PRD-C1 linear
6 01:31 40 91 22 25 0.868 0.766 39.40 88.1 8.1 4.0 4.9 1745 865 137.2 64.2 AC12-PRD-C1 linear
7 01:46 40 95 22 24 0.787 0.714 38.71 88.9 8.2 4.1 4.9 1729 857 142.2 62.4 AC12-PRD-C1 linear
8 01:59 40 94 23 23 0.816 0.691 41.37 86.5 8.2 4.0 4.9 1732 858 140.7 61.5 AC12-PRD-C1 linear
9 02:14 55 98 24 25 0.921 0.784 41.02 90.8 8.6 4.3 5.2 1641 813 148.5 61.1 AC12-PRD-C1 linear
10 02:30 55 100 23 26 0.935 0.825 41.19 93.2 9.1 4.5 5.5 1555 770 146.9 63.4 AC12-PRD-C1 linear
11 02:44 55 101 23 28 0.989 0.900 41.54 94.7 9.5 4.7 5.7 1486 736 153.6 61.6 AC12-PRD-C1 linear
12 02:59 55 100 21 28 0.960 0.907 41.89 94.8 9.5 4.7 5.7 1480 733 152.3 62.3 AC12-PRD-C1 linear
13 03:16 70 108 22 32 1.050 1.008 41.12 92.6 9.4 4.6 5.6 1505 745 144.2 64.2 AC12-PRD-C1 linear
14 03:29 70 108 24 33 0.994 0.982 41.16 93.7 10.0 4.9 6.0 1423 705 144.0 65.1 AC12-PRD-C1 linear
15 03:46 70 110 24 32 1.121 1.066 42.98 95.9 10.4 5.1 6.2 1358 673 147.5 65.0 AC12-PRD-C1 linear
16 03:57 70 113 22 33 1.136 1.132 42.80 93.1 10.3 5.1 6.2 1371 679 147.3 63.2 AC12-PRD-C1 linear
17 04:14 85 115 23 37 1.227 1.204 42.53 101.4 11.3 5.6 6.8 1256 622 146.3 69.3 AC12-PRD-C1 linear
18 04:31 85 118 23 42 1.193 1.269 40.75 101.1 11.5 5.7 6.9 1224 606 155.9 64.8 AC12-PRD-C1 linear
19 04:44 85 120 22 38 1.164 1.241 42.64 89.4 10.5 5.2 6.3 1347 667 142.4 62.7 AC12-PRD-C1 linear
20 05:00 85 122 23 41 1.212 1.291 41.45 97.6 11.6 5.8 7.0 1216 603 151.3 64.5 AC12-PRD-C1 linear
21 05:16 100 122 25 47 1.333 1.463 40.82 105.1 12.7 6.3 7.6 1112 551 152.8 68.8 AC12-PRD-C1 linear
22 05:30 100 126 26 48 1.289 1.488 40.23 100.3 12.3 6.1 7.4 1151 570 151.4 66.3 AC12-PRD-C1 linear
23 05:46 100 130 27 48 1.358 1.527 41.46 97.5 12.3 6.1 7.4 1152 571 154.3 63.2 AC12-PRD-C1 linear
24 06:01 100 130 26 50 1.403 1.596 41.87 100.7 12.9 6.4 7.7 1096 543 158.4 63.6 AC12-PRD-C1 linear
25 06:15 115 131 30 52 1.463 1.633 41.37 99.8 13.0 6.4 7.8 1092 541 159.5 62.8 AC12-PRD-C1 linear
26 06:31 115 136 27 56 1.494 1.756 40.54 108.0 14.2 7.0 8.5 993 492 157.2 68.7 AC12-PRD-C1 linear
27 06:44 115 137 27 55 1.441 1.740 40.36 105.6 14.2 7.0 8.5 993 492 159.8 66.2 AC12-PRD-C1 linear
28 07:00 115 139 28 60 1.593 1.912 40.64 104.5 14.4 7.1 8.7 978 484 155.4 67.3 AC12-PRD-C1 linear
Когда я использую этот код для группировки своих данных:
df_sum <- dftest %>%
group_by(id, power) %>%
summarise_at(vars(-time), mean) %>%
mutate(percent_VO2 = VO2/max(VO2)*100,
percent_power = power/max(power)*100)
Я получил NA
значения в столбце training
, и я не знаю почему, потому что это был персонаж в начале. Я уже использовал этот код, но ничего не изменилось:
df_sum <- dftest %>%
group_by(id, power) %>%
mutate_at(vars(18), as.character) %>%
summarise_at(vars(-time), mean) %>%
mutate(percent_VO2 = VO2/max(VO2)*100,
percent_power = power/max(power)*100)
У кого-нибудь есть решение?
спасибо!