Среда:
Spark version: 2.3.0
Run Mode: Local
Java version: Java 8
Приложение spark пытается сделать следующее
1) Преобразовать входные данные в группу данных [GenericRecord]
2) Группой ключевое свойство GenericRecord
3) Использование mapGroups после группы для итерации списка значений и получения результата в формате String
4) Вывод результата в виде String в текстовом файле.
Ошибка происходит при записи в текстовый файл. Spark установил, что набор данных, сгенерированный на шаге 3, имеет двоичный столбец, а не столбец String. Но на самом деле он возвращает String в функции mapGroups.
Есть ли способ сделать преобразование типа данных столбца или позволить Spark знать, что это на самом деле строковый столбец, а не двоичный?
val dslSourcePath = args(0)
val filePath = args(1)
val targetPath = args(2)
val df = spark.read.textFile(filePath)
implicit def kryoEncoder[A](implicit ct: ClassTag[A]): Encoder[A] = Encoders.kryo[A](ct)
val mapResult = df.flatMap(abc => {
JavaConversions.asScalaBuffer(some how return a list of Avro GenericRecord using a java library).seq;
})
val groupResult = mapResult.groupByKey(result => String.valueOf(result.get("key")))
.mapGroups((key, valueList) => {
val result = StringBuilder.newBuilder.append(key).append(",").append(valueList.count(_=>true))
result.toString()
})
groupResult.printSchema()
groupResult.write.text(targetPath + "-result-" + System.currentTimeMillis())
И в выводе говорится, что это мусорное ведро
root
|-- value: binary (nullable = true)
Spark выдает ошибку, что он не может записать двоичный текст как текст:
Exception in thread "main" org.apache.spark.sql.AnalysisException: Text data source supports only a string column, but you have binary.;
at org.apache.spark.sql.execution.datasources.text.TextFileFormat.verifySchema(TextFileFormat.scala:55)
at org.apache.spark.sql.execution.datasources.text.TextFileFormat.prepareWrite(TextFileFormat.scala:78)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:140)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:154)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:273)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:267)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:225)
at org.apache.spark.sql.DataFrameWriter.text(DataFrameWriter.scala:595)