делать это с последовательными моделями вообще невозможно. Вы должны использовать функциональный API
inp = Input((5,5,1))
x = Conv2D(50, (5,5), activation='relu', kernel_initializer='he_normal')(inp)
xflatten = Flatten()(x)
out = Dense(1, activation='sigmoid')(xflatten)
main_model = Model(inp, out) # this works same as your model
flatten_model = Model(inp, xflatten) # and this only outputs the flatten layer and is not necessary to compile it because we won't train it, it just shows the output of a layer
main_model.compile(loss='binary_crossentropy', optimizer= 'adam', metrics=['accuracy'])
history = main_model.fit(X_train, Y_train, epochs=10, batch_size=32, verbose=1, callbacks=[model_checkpoint], shuffle=True, validation_split=0.5)
, чтобы увидеть вывод сглаженных слоев:
flatten_model.predict(X)