Другое обновление:
library(shiny)
library(vroom)
library(dplyr)
library(shinycssloaders)
library(shinydashboard)
library(shinydashboardPlus)
library(tidyr)
header <- dashboardHeader()
sidebar <- dashboardSidebar(width = 450,
sidebarMenu(id = "tabs",
menuItem(
"Filtros",
tabName = "filtros",
icon = icon("bar-chart-o")
),
uiOutput("filtros")
))
body <- dashboardBody(tabItems(tabItem(tabName = "filtros",
fluidRow(
column(12,
DT::dataTableOutput("tabla_julio") # %>% withSpinner(color = "#0dc5c1")
)
))))
ui <-
dashboardPagePlus(
enable_preloader = FALSE,
sidebar_fullCollapse = TRUE,
header,
sidebar,
body
)
server = function(input, output, session) {
# Create the choices for sample input
vals <- reactiveValues(data = iris, filtered_data = iris)
output$filtros <- renderUI({
datos <- isolate(vals$data)
conditionalPanel(
"input.tabs == 'filtros'",
tagList(
div(
style = "display: inline-block;vertical-align:top; width: 221px;",
numericInput(
inputId = "SepalLength",
label = "Sepal.Length",
value = NA,
min = NA,
max = NA,
step = NA
)
),
div(
div(
style = "display: inline-block;vertical-align:top; width: 224px;",
selectInput(
inputId = "Species",
label = "Species",
width = "220",
choices = unique(isolate(datos$Species)),
selected = NULL,
multiple = TRUE,
selectize = TRUE,
size = NULL
)
)
)
),
actionButton("filtrar", "Filter", style = "width: 100px;"),
actionButton("reset", "Reset", style = "width: 100px;")
)
})
# Filter data
observeEvent(input$filtrar, {
tib <- vals$data
if (!is.na(input$SepalLength)) {
tib <- tib %>% dplyr::filter(Sepal.Length < input$SepalLength)
print(head(tib))
} else {
tib
}
# Filter
if (!is.null(input$Species)) {
tib <- tib %>% dplyr::filter(Species %in% input$Species)
} else {
tib
}
print(head(tib, n = 15))
vals$filtered_data <- tib
updateSelectInput(session, inputId = "Species", selected = input$Species, choices = unique(vals$filtered_data$Species))
})
observeEvent(input$reset, {
updateNumericInput(session, inputId = "SepalLength", value = NA)
updateSelectInput(session, inputId = "Species", selected = "")
})
# Reactive function creating the DT output object
output$tabla_julio <- DT::renderDataTable({
DT::datatable(vals$filtered_data)
}, server = FALSE)
}
shinyApp(ui, server)
Обновление: Вот то, что я думаю, что вы после. Наиболее важным шагом является isolate
входы в renderUI
, чтобы они не перерисовывались при каждом изменении входа.
library(shiny)
library(vroom)
library(dplyr)
library(shinycssloaders)
library(shinydashboard)
library(shinydashboardPlus)
library(tidyr)
header <- dashboardHeader()
sidebar <- dashboardSidebar(width = 450,
sidebarMenu(id = "tabs",
menuItem(
"Filtros",
tabName = "filtros",
icon = icon("bar-chart-o")
),
uiOutput("filtros")
))
body <- dashboardBody(tabItems(tabItem(tabName = "filtros",
fluidRow(
column(12,
DT::dataTableOutput("tabla_julio") # %>% withSpinner(color = "#0dc5c1")
)
))))
ui <-
dashboardPagePlus(
enable_preloader = FALSE,
sidebar_fullCollapse = TRUE,
header,
sidebar,
body
)
server = function(input, output, session) {
# Create the choices for sample input
vals <- reactiveValues(data = iris, filtered_data = iris)
output$filtros <- renderUI({
datos <- isolate(vals$data)
conditionalPanel(
"input.tabs == 'filtros'",
tagList(
div(
style = "display: inline-block;vertical-align:top; width: 221px;",
numericInput(
inputId = "SepalLength",
label = "Sepal.Length",
value = NA,
min = NA,
max = NA,
step = NA
)
),
div(
div(
style = "display: inline-block;vertical-align:top; width: 224px;",
selectInput(
inputId = "Species",
label = "Species",
width = "220",
choices = unique(isolate(datos$Species)),
selected = NULL,
multiple = TRUE,
selectize = TRUE,
size = NULL
)
)
)
),
actionButton("filtrar", "Filter", style = "width: 100px;"),
actionButton("reset", "Reset", style = "width: 100px;")
)
})
# Filter data
observeEvent(input$filtrar, {
tib <- vals$data
if (!is.na(input$SepalLength)) {
tib <- tib %>% dplyr::filter(Sepal.Length < input$SepalLength)
print(head(tib))
} else {
tib
}
# Filter
if (!is.null(input$Species)) {
tib <- tib %>% dplyr::filter(Species %in% input$Species)
} else {
tib
}
print(head(tib, n = 15))
vals$filtered_data <- tib
})
observeEvent(input$reset, {
updateNumericInput(session, inputId = "SepalLength", value = NA)
updateSelectInput(session, inputId = "Species", selected = "")
})
# Reactive function creating the DT output object
output$tabla_julio <- DT::renderDataTable({
DT::datatable(vals$filtered_data)
}, server = FALSE)
}
shinyApp(ui, server)
Первоначальный ответ:
Я бы рекомендовал использовать selectizeGroup-модуль из библиотеки (inyWidgets ).
Создает
Группа взаимозависимых selectizeInput
для фильтрации столбцов data.frame (как в Excel).
Помимо того, что он использует только selectizeInput
, он, кажется, отвечает вашим требованиям и спасает нас от много набора.
Вот пример использования набора данных iris
:
library(shiny)
library(DT)
library(shinyWidgets)
library(datasets)
DF <- iris
names(DF) <- gsub("\\.", "", names(DF))
ui <- fluidPage(
fluidRow(
column(width = 10, offset = 1, tags$h3("Filter data with selectize group")),
column(width = 3, offset = 1,
selectizeGroupUI(
id = "my-filters",
params = list(
SepalLength = list(inputId = "SepalLength", title = "SepalLength:"),
SepalWidth = list(inputId = "SepalWidth", title = "SepalWidth:"),
PetalLength = list(inputId = "PetalLength", title = "PetalLength:"),
PetalWidth = list(inputId = "PetalWidth", title = "PetalWidth:"),
species = list(inputId = "Species", title = "Species:")
),
inline = FALSE
)),
column(
width = 10, offset = 1,DT::dataTableOutput(outputId = "table")
)
)
)
server <- function(input, output, session) {
filtered_table <- callModule(
module = selectizeGroupServer,
id = "my-filters",
data = DF,
vars = names(DF)
)
output$table <- DT::renderDataTable(filtered_table())
}
shinyApp(ui, server)