Я не уверен, что это ответит на все ваши вопросы, но должно стать хорошим началом. Уточните в комментарии или в вашем вопросе, если вам нужен другой тип вывода.
Удаляет все точки, не входящие в один из полигонов 'зоны', считает их по зонам и наносит на график зоны, окрашенные количеством точек, попадающих в зону.
library(raster)
library(tidyverse)
library(sf)
#> Linking to GEOS 3.6.2, GDAL 2.2.3, PROJ 4.9.3
library(spatstat)
library(maptools)
#> Checking rgeos availability: TRUE
load(url("https://www.dropbox.com/s/iv1s5butsx2v01r/example.RData?dl=1"))
# alternatively, links to gists for each object
# https://gist.github.com/ericpgreen/d80665d22dfa1c05607e75b8d2163b84
# https://gist.github.com/ericpgreen/7f4d3cee3eb5efed5486f7f713306e96
p1 <- ggplot() +
geom_sf(data = zones) +
geom_sf(data = points) +
theme_minimal()
#Remove points outside of zones
points_inside <- st_intersection(points, zones)
#> although coordinates are longitude/latitude, st_intersection assumes that they are planar
#> Warning: attribute variables are assumed to be spatially constant throughout all
#> geometries
nrow(points)
#> [1] 308
nrow(points_inside)
#> [1] 201
p2 <- ggplot() +
geom_sf(data = zones) +
geom_sf(data = points_inside)
points_per_zone <- st_join(zones, points_inside) %>%
count(LocationID.x)
#> although coordinates are longitude/latitude, st_intersects assumes that they are planar
p3 <- ggplot() +
geom_sf(data = points_per_zone,
aes(fill = n)) +
scale_fill_viridis_c(option = 'C')
points_per_zone
#> Simple feature collection with 4 features and 2 fields
#> geometry type: POLYGON
#> dimension: XY
#> bbox: xmin: 34.0401 ymin: -1.076718 xmax: 34.17818 ymax: -0.9755066
#> epsg (SRID): 4326
#> proj4string: +proj=longlat +ellps=WGS84 +no_defs
#> # A tibble: 4 x 3
#> LocationID.x n geometry
#> * <dbl> <int> <POLYGON [°]>
#> 1 10 129 ((34.08018 -0.9755066, 34.0803 -0.9757393, 34.08046 -0.975…
#> 2 20 19 ((34.05622 -0.9959458, 34.05642 -0.9960835, 34.05665 -0.99…
#> 3 30 29 ((34.12994 -1.026372, 34.12994 -1.026512, 34.12988 -1.0266…
#> 4 40 24 ((34.11962 -1.001829, 34.11956 -1.002018, 34.11966 -1.0020…
cowplot::plot_grid(p1, p2, p3, nrow = 2, ncol = 2)
Кажется, я недооценил сложность вашей проблемы. Является ли что-то похожее на график ниже (и лежащие в его основе данные), что вы ищете?
Используется растр с сеткой ~ 50x50, растр :: фокус с окном 9x9, используя среднее значение для интерполяции данных.