Я хочу провести эксперимент. и мне нужно получить вес модели Keras, сделать его одномерным массивом и сделать форму, похожую на начальную
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
model = tf.keras.Sequential()
# Adds a densely-connected layer with 64 units to the model:
model.add(layers.Dense( 4, input_dim = 5 ,activation='relu'))
# Add another:
model.add(layers.Dense(3, activation='relu'))
# Add an output layer with 10 output units:
model.add(layers.Dense(2))
# Configure a model for mean-squared error regression.
model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
loss='mse', # mean squared error
metrics=['mae']) # mean absolute error
weights = (model.get_weights())
#make weight become 1D array
#maka 1D array become like inital shape
model.set_weights(weights)
. Почему я хочу это сделать? потому что я хочу сделать некоторую мутацию, используя другой модуль, необходимо передать 1D массив
как это сделать?
как мы знаем, форма весов модели Keras выглядит следующим образом
[array([[-0.24053234, 0.4722855 , 0.29863954, 0.22805429],
[ 0.45101106, -0.00229341, -0.6142864 , -0.2751704 ],
[ 0.159172 , 0.43983865, 0.61577237, 0.24255097],
[ 0.24160242, 0.422235 , 0.8066592 , -0.2711717 ],
[-0.30763668, -0.4841219 , 0.767977 , 0.23558974]],
dtype=float32), array([0., 0., 0., 0.], dtype=float32), array([[ 0.24129152, -0.4890638 , 0.18787515],
[ 0.8663894 , -0.09163451, -0.86416066],
[-0.01754427, 0.32654428, -0.78837514],
[ 0.589849 , 0.5886531 , 0.27824092]], dtype=float32), array([0., 0., 0.], dtype=float32), array([[ 0.8456359 , -0.26292562],
[-1.0447757 , -0.43539298],
[ 1.0835328 , -0.43536085]], dtype=float32), array([0., 0.], dtype=float32)]