Столбцы заказа в pandas кадре данных - PullRequest
0 голосов
/ 03 апреля 2020

У меня есть pandas датафрейм, как показано ниже:

import pandas as pd
import numpy as np
df = pd.DataFrame({'CATEGORY': [1, 1, 2, 2],
                    'GROUP': ['A', 'A', 'B', 'B'],
                     'XYZ': [3000, 2500, 3000, 3000],
                  'VAL': [3000, 2500, 3000, 3000],
                  'A_CLASS': [3000, 2500, 3000, 3000],
                  'B_CAL': [3000, 4500, 3000, 1000],
                  'C_CLASS': [3000, 2500, 3000, 3000],
                  'A_CAL': [3000, 2500, 3000, 3000],
                  'B_CLASS': [3000, 4500, 3000, 500],
                  'C_CAL': [3000, 2500, 3000, 3000],
                  'ABC': [3000, 2500, 3000, 3000]})
df

CATEGORY   GROUP   XYZ   VAL    A_CLASS  B_CAL  C_CLASS   A_CAL   B_CLASS   C_CAL  ABC  
1          A       3000   1     3000     3000     3000     3000    3000     3000   3000
1          A       2500   2     2500     4500     2500     2500    4500     2500   2500
2          B       3000   4     3000     3000     3000     3000    3000     3000   3000
2          B       3000   1     3000     1000     3000     3000    500      3000   3000

Мне нужны столбцы в порядке ниже в моем окончательном фрейме данных

GROUP, CATEGORY, все столбцы с суффиксом "_CAL", все столбцы с суффиксом "_CLASS", все остальные поля

Мой ожидаемый результат:

GROUP    CATEGORY   B_CAL    A_CAL   C_CAL   A_CLASS   C_CLASS    B_CLASS   XYZ   VAL   ABC 
A        1          3000     3000    3000    3000      3000       3000      3000   1    3000
A        1          4500     2500    2500    2500      2500       4500      2500   2    2500
A        1          8000     7000    8000    8000      8000       8000      8000   5    8000
B        2          3000     3000    3000    3000      3000       3000      3000   4    3000
B        2          1000     3000    3000    3000      3000       500       3000   1    3000

Ответы [ 2 ]

3 голосов
/ 03 апреля 2020

Fun с sorted:

first = ['GROUP','CATEGORY']
cols = sorted(df.columns.difference(first),
              key=lambda x: (not x.endswith('_CAL'), not x.endswith('_CLASS')))

df[first+cols]

   GROUP  CATEGORY  A_CAL  B_CAL  C_CAL  A_CLASS  B_CLASS  C_CLASS   ABC   VAL  \
0     A         1   3000   3000   3000     3000     3000     3000  3000  3000   
1     A         1   2500   4500   2500     2500     4500     2500  2500  2500   
2     B         2   3000   3000   3000     3000     3000     3000  3000  3000   
3     B         2   3000   1000   3000     3000      500     3000  3000  3000   

    XYZ  
0  3000  
1  2500  
2  3000  
3  3000  

Для получения более подробной информации вот аналогичный с подробным объяснением

2 голосов
/ 03 апреля 2020

Вам просто нужно поиграть со строками

cols = df.columns
cols_sorted = ["GROUP", "CATEGORY"] +\
              [col for col in cols if col.endswith('_CAL')] +\
              [col for col in cols if col.endswith('_CLASS')]
cols_sorted += sorted([col for col in cols if col not in cols_sorted])

df = df[cols_sorted]
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...