При попытке скомпилировать код OpenA CC с G CC -9.3.0 (g ++), настроенным с --enable-languages=c,c++,lto --disable-multilib
, следующий код не использует несколько ядер, тогда как если тот же код компилируется с помощью компилятора pgc ++, он действительно использует несколько ядер.
g ++ компиляция: g++ -lgomp -Ofast -o jsolve -fopenacc jsolvec.cpp
pgc ++ компиляция: pgc++ -o jsolvec.exe jsolvec.cpp -fast -Minfo=opt -ta=multicore
код из OpenA CC Tutorial1 / solver https://github.com/OpenACCuserGroup/openacc-users-group.git :
// Jacobi iterative method for solving a system of linear equations
// This is guaranteed to converge if the matrix is diagonally dominant,
// so we artificially force the matrix to be diagonally dominant.
// See https://en.wikipedia.org/wiki/Jacobi_method
//
// We solve for vector x in Ax = b
// Rewrite the matrix A as a
// lower triangular (L),
// upper triangular (U),
// and diagonal matrix (D).
//
// Ax = (L + D + U)x = b
//
// rearrange to get: Dx = b - (L+U)x --> x = (b-(L+U)x)/D
//
// we can do this iteratively: x_new = (b-(L+U)x_old)/D
// build with TYPE=double (default) or TYPE=float
// build with TOLERANCE=0.001 (default) or TOLERANCE= any other value
// three arguments:
// vector size
// maximum iteration count
// frequency of printing the residual (every n-th iteration)
#include <cmath>
#include <omp.h>
#include <cstdlib>
#include <iostream>
#include <iomanip>
using std::cout;
#ifndef TYPE
#define TYPE double
#endif
#define TOLERANCE 0.001
void
init_simple_diag_dom(int nsize, TYPE* A)
{
int i, j;
// In a diagonally-dominant matrix, the diagonal element
// is greater than the sum of the other elements in the row.
// Scale the matrix so the sum of the row elements is close to one.
for (i = 0; i < nsize; ++i) {
TYPE sum;
sum = (TYPE)0;
for (j = 0; j < nsize; ++j) {
TYPE x;
x = (rand() % 23) / (TYPE)1000;
A[i*nsize + j] = x;
sum += x;
}
// Fill diagonal element with the sum
A[i*nsize + i] += sum;
// scale the row so the final matrix is almost an identity matrix
for (j = 0; j < nsize; j++)
A[i*nsize + j] /= sum;
}
} // init_simple_diag_dom
int
main(int argc, char **argv)
{
int nsize; // A[nsize][nsize]
int i, j, iters, max_iters, riter;
double start_time, elapsed_time;
TYPE residual, err, chksum;
TYPE *A, *b, *x1, *x2, *xnew, *xold, *xtmp;
// set matrix dimensions and allocate memory for matrices
nsize = 0;
if (argc > 1)
nsize = atoi(argv[1]);
if (nsize <= 0)
nsize = 1000;
max_iters = 0;
if (argc > 2)
max_iters = atoi(argv[2]);
if (max_iters <= 0)
max_iters = 5000;
riter = 0;
if (argc > 3)
riter = atoi(argv[3]);
if (riter <= 0)
riter = 200;
cout << "nsize = " << nsize << ", max_iters = " << max_iters << "\n";
A = new TYPE[nsize*nsize];
b = new TYPE[nsize];
x1 = new TYPE[nsize];
x2 = new TYPE[nsize];
// generate a diagonally dominant matrix
init_simple_diag_dom(nsize, A);
// zero the x vectors, random values to the b vector
for (i = 0; i < nsize; i++) {
x1[i] = (TYPE)0.0;
x2[i] = (TYPE)0.0;
b[i] = (TYPE)(rand() % 51) / 100.0;
}
start_time = omp_get_wtime();
//
// jacobi iterative solver
//
residual = TOLERANCE + 1.0;
iters = 0;
xnew = x1; // swap these pointers in each iteration
xold = x2;
while ((residual > TOLERANCE) && (iters < max_iters)) {
++iters;
// swap input and output vectors
xtmp = xnew;
xnew = xold;
xold = xtmp;
#pragma acc parallel loop
for (i = 0; i < nsize; ++i) {
TYPE rsum = (TYPE)0;
#pragma acc loop reduction(+:rsum)
for (j = 0; j < nsize; ++j) {
if (i != j) rsum += A[i*nsize + j] * xold[j];
}
xnew[i] = (b[i] - rsum) / A[i*nsize + i];
}
//
// test convergence, sqrt(sum((xnew-xold)**2))
//
residual = 0.0;
#pragma acc parallel loop reduction(+:residual)
for (i = 0; i < nsize; i++) {
TYPE dif;
dif = xnew[i] - xold[i];
residual += dif * dif;
}
residual = sqrt((double)residual);
if (iters % riter == 0 ) cout << "Iteration " << iters << ", residual is " << residual << "\n";
}
elapsed_time = omp_get_wtime() - start_time;
cout << "\nConverged after " << iters << " iterations and " << elapsed_time << " seconds, residual is " << residual << "\n";
//
// test answer by multiplying my computed value of x by
// the input A matrix and comparing the result with the
// input b vector.
//
err = (TYPE)0.0;
chksum = (TYPE)0.0;
for (i = 0; i < nsize; i++) {
TYPE tmp;
xold[i] = (TYPE)0.0;
for (j = 0; j < nsize; j++)
xold[i] += A[i*nsize + j] * xnew[j];
tmp = xold[i] - b[i];
chksum += xnew[i];
err += tmp * tmp;
}
err = sqrt((double)err);
cout << "Solution error is " << err << "\n";
if (err > TOLERANCE)
cout << "****** Final Solution Out of Tolerance ******\n" << err << " > " << TOLERANCE << "\n";
delete A;
delete b;
delete x1;
delete x2;
return 0;
}