structure(list(Date = c("2019.01.26", "2019.01.26", "2019.01.26",
"2019.01.26", "2019.01.26", "2019.01.26", "2019.01.26", "2019.01.26",
"2019.01.26", "2019.01.26", "2019.01.26", "2019.01.26", "2019.01.26",
"2019.01.26", "2019.01.26", "2019.01.26", "2019.01.26", "2019.01.26",
"2019.01.26", "2019.01.26"), Participant = c("CV", "CV", "CV",
"CV", "CV", "CV", "CV", "CV", "CV", "CV", "CV", "CV", "CV", "CV",
"CV", "CV", "CV", "CV", "CV", "CV"), Machine_ASVZ = c("A1", "A1",
"A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",
"A1", "A1", "A1", "A1", "A1", "A1", "A1"), Machine = c("LEG PRESS",
"LEG PRESS", "LEG PRESS", "LEG PRESS", "LEG PRESS", "LEG PRESS",
"LEG PRESS", "LEG PRESS", "LEG PRESS", "LEG PRESS", "LEG PRESS",
"LEG PRESS", "LEG PRESS", "LEG PRESS", "LEG PRESS", "LEG PRESS",
"LEG PRESS", "LEG PRESS", "LEG PRESS", "LEG PRESS"), Set = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), Contraction_Mode = c("Con01",
"Con02", "Con03", "Con04", "Con05", "Con06", "Con07", "Con08",
"Con09", "Con10", "Con01", "Con02", "Con03", "Con04", "Con05",
"Con06", "Con07", "Con08", "Con09", "Con10"), Time_Video_CV = c(1340,
1160, 1220, 1260, 1560, 1020, 1060, 1100, 1060, 1040, 1080, 980,
1020, 1000, 940, 1000, 960, 1000, 900, 980), Time_Video_GRFD = c(1360,
1180, 1240, 1280, 1180, 1060, 1080, 1100, 1060, 1060, 1100, 980,
1020, 1020, 980, 1020, 960, 980, 920, 1040), Time_Smartphone_1 = c(1650,
1350, 1400, 1400, 1350, 1250, 1550, 1500, 1600, 1650, 2500, 1100,
1100, 1150, 1100, 1200, 1350, 1450, 1200, 1600), Time_Smartphone_3 = c(1700,
1350, 1350, 1350, 1300, 1250, 1600, 1500, 1650, 1650, 1300, 1100,
1150, 1150, 1100, 1150, 1200, 1400, 1400, 1700), Rater_Mean = c(1350,
1170, 1230, 1270, 1370, 1040, 1070, 1100, 1060, 1050, 1090, 980,
1020, 1010, 960, 1010, 960, 990, 910, 1010), Smartphone_Mean = c(1675,
1350, 1375, 1375, 1325, 1250, 1575, 1500, 1625, 1650, 1900, 1100,
1125, 1150, 1100, 1175, 1275, 1425, 1300, 1650), Relative_Diff = c(0.241,
0.154, 0.118, 0.083, 0.033, 0.202, 0.472, 0.364, 0.533, 0.571,
0.743, 0.122, 0.103, 0.139, 0.146, 0.163, 0.328, 0.439, 0.429,
0.634), RaterSmartphone_Diff = c(-325, -180, -145, -105, 45,
-210, -505, -400, -565, -600, -810, -120, -105, -140, -140, -165,
-315, -435, -390, -640), RaterSmartphone_Mean = c(1512.5, 1260,
1302.5, 1322.5, 1347.5, 1145, 1322.5, 1300, 1342.5, 1350, 1495,
1040, 1072.5, 1080, 1030, 1092.5, 1117.5, 1207.5, 1105, 1330),
Contraction_Mode_Levels = c("Con", "Con", "Con", "Con", "Con",
"Con", "Con", "Con", "Con", "Con", "Con", "Con", "Con", "Con",
"Con", "Con", "Con", "Con", "Con", "Con"), Rater_Diff = c(-20,
-20, -20, -20, 380, -40, -20, 0, 0, -20, -20, 0, 0, -20,
-40, -20, 0, 20, -20, -60), Smartphone_Diff = c(-50, 0, 50,
50, 50, 0, -50, 0, -50, 0, 1200, 0, -50, 0, 0, 50, 150, 50,
-200, -100), RaterSmartphone_Diff_Potential_Outlier = c(FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE,
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE,
TRUE), Rater_Diff_Potential_Outlier = c(FALSE, FALSE, FALSE,
FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
Smartphone_Diff_Potential_Outlier = c(FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE), Normalized_Error_Smartphone = c(19.4,
13.33, 10.55, 7.64, 3.4, 16.8, 32.06, 26.67, 34.77, 36.36,
42.63, 10.91, 9.33, 12.17, 12.73, 14.04, 24.71, 30.53, 30,
38.79), Participant_Age_Levels = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = c("old", "young"), class = "factor"), Participant_Age = c(42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42)), row.names = c(NA, 20L), class = "data.frame")
Вы можете найти пример моего data.frame. Я пытаюсь сгруппировать данные по Machine и Contraction_Mode_Levels, а затем суммировать тест Манна-Уинни-U для обоих двух факторов: «молодой» и «старый».
Я пытаюсь запустить Манна-Уни -U проверить в качестве следующего:
wilcox<-all_data_wide_outlier_levels %>%
group_by(Machine,Contraction_Mode_Levels) %>%
summarise_each(funs(wilcox.test(.[Participant_Age_Levels == "young"],
.[Participant_Age_Levels == "old"],
paired=FALSE, alternative = c("two.sided"))$parameter,
wilcox.test(.[Participant_Age_Levels == "young"],
.[Participant_Age_Levels == "old"],
paired=FALSE, alternative = c("two.sided"))$statistic,
wilcox.test(.[Participant_Age_Levels == "young"],
.[Participant_Age_Levels == "old"],
paired=FALSE, alternative = c("two.sided"))$p.value),
vars = Rater_Mean)
, который возвращает ошибку:
Ошибка: столбец vars_$..1
имеет неподдерживаемый тип NULL