Ниже приведен простой пример объединения 2 входных слоев с различной формой ввода и подачи на следующий слой.
import tensorflow.keras.backend as K
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, concatenate, Conv2D, ZeroPadding2D, Dense
from tensorflow.keras.optimizers import Adagrad
input_img1 = Input(shape=(44,44,3))
x1 = Conv2D(3, (3, 3), activation='relu', padding='same')(input_img1)
input_img2 = Input(shape=(34,34,3))
x2 = Conv2D(3, (3, 3), activation='relu', padding='same')(input_img2)
# Zero Padding of 5 at the top, bottom, left and right side of an image tensor
x3 = ZeroPadding2D(padding = (5,5))(x2)
# Concatenate works as layers have same size output
x4 = concatenate([x1,x3])
output = Dense(18, activation='relu')(x4)
model = Model(inputs=[input_img1,input_img2], outputs=output)
model.summary()
Вывод -
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_4 (InputLayer) [(None, 34, 34, 3)] 0
__________________________________________________________________________________________________
input_3 (InputLayer) [(None, 44, 44, 3)] 0
__________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 34, 34, 3) 84 input_4[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 44, 44, 3) 84 input_3[0][0]
__________________________________________________________________________________________________
zero_padding2d_1 (ZeroPadding2D (None, 44, 44, 3) 0 conv2d_3[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 44, 44, 6) 0 conv2d_2[0][0]
zero_padding2d_1[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 44, 44, 18) 126 concatenate_1[0][0]
==================================================================================================
Total params: 294
Trainable params: 294
Non-trainable params: 0
__________________________________________________________________________________________________
Если ответ выше не тот вы ищете, а затем попросили бы вас поделиться псевдокодом или блок-схемами моделей, чтобы ответить лучше.