Вы можете указать оба возможных значения format
s в to_datetime
, поэтому, если формат не соответствует, возвращаются пропущенные значения, поэтому возможно использование Series.fillna
:
date1 = pd.to_datetime(df['DateTime'], errors = 'coerce', format='%m/%d/%Y %H:%M')
date2 = pd.to_datetime(df['DateTime'], errors = 'coerce', format='%d/%m/%Y %H:%M:%S %p')
df['DateTime'] = date1.fillna(date2)
print (df)
S. No DateTime Area
0 1 2019-03-05 06:33:00 A
1 2 2019-03-06 07:23:45 B
Последнее, если хотите указать новый формат добавить Series.dt.strftime
- преимущество решения заключается в проверке обоих форматов:
df['DateTime'] = date1.fillna(date2).dt.strftime('%d/%m/%Y %H:%M:%S %p')
print (df)
S. No DateTime Area
0 1 05/03/2019 06:33:00 AM A
1 2 06/03/2019 07:23:45 AM B
Подробности :
print (date1)
0 2019-03-05 06:33:00
1 NaT
Name: DateTime, dtype: datetime64[ns]
print (date2)
0 NaT
1 2019-03-06 07:23:45
Name: DateTime, dtype: datetime64[ns]
Другое возможное решение без проверки других форматов - только переформатированный формат %m/%d/%Y %H:%M
до %d/%m/%Y %H:%M:%S %p
:
date1 = pd.to_datetime(df['DateTime'], errors = 'coerce', format='%m/%d/%Y %H:%M').dt.strftime('%d/%m/%Y %H:%M:%S %p')
df['DateTime'] = date1.replace('NaT', df['DateTime'])
print (df)
S. No DateTime Area
0 1 05/03/2019 06:33:00 AM A
1 2 06/03/2019 07:23:45 AM B