Coq имеет несколько удобных тактик для автоматического доказательства арифметических c лемм, например lia
:
From Coq Require Import ssreflect ssrfun ssrbool.
From mathcomp Require Import ssrnat.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Require Import Psatz.
Lemma obv : forall (x y z: nat), (x < y)%coq_nat -> (y < z)%coq_nat -> (z < 3)%coq_nat -> (x < 3)%coq_nat.
Proof.
move => x y z xlty yltz zlt3. lia.
Qed.
Однако эта тактика напрямую не поддерживает операторы логического отражения в стиле SSReflect:
Lemma obv_ssr: forall (x y z: nat), (x < y) && (y < z) && (z < 3) -> (x < 3).
Proof.
move => x y z H. Fail lia.
Abort.
Lemma obv_ssr: forall (x y z: nat), (x < y) -> (y < z) -> (z < 3) -> (x < 3).
Proof.
move => x y z xlty yltz zlt3. Fail lia.
Abort.
Их можно решить путем преобразования в не-SSR формат с использованием представлений:
Lemma obv_ssr: forall (x y z: nat), (x < y) && (y < z) && (z < 3) -> (x < 3).
Proof.
move => x y z. move/andP => [/andP [/ltP x_lt_y /ltP y_lt_z] /ltP z_lt_3].
apply/ltP. lia.
Qed.
Это, однако, очень руководство. Есть ли какая-то техника / подход / тактика c, которая может автоматизировать это применение лемм, таких как lia
, к заявлениям в стиле SSR?