Я тренировал модель с ResNet50 и получил удивительную точность 95% на тренировочном наборе. Я взял тот же тренировочный набор для проверки, и точность кажется очень плохой. (<0,05%) </p>
from keras.preprocessing.image import ImageDataGenerator
train_set = ImageDataGenerator(horizontal_flip=True,rescale=1./255,shear_range=0.2,zoom_range=0.2).flow_from_directory(data,target_size=(256,256),classes=['airplane','airport','baseball_diamond',
'basketball_court','beach','bridge',
'chaparral','church','circular_farmland',
'commercial_area','dense_residential','desert',
'forest','freeway','golf_course','ground_track_field',
'harbor','industrial_area','intersection','island',
'lake','meadow','medium_residential','mobile_home_park',
'mountain','overpass','parking_lot','railway','rectangular_farmland',
'roundabout','runway'],batch_size=31)
from keras.applications import ResNet50
from keras.applications.resnet50 import preprocess_input
from keras import layers,Model
conv_base = ResNet50(
include_top=False,
weights='imagenet')
for layer in conv_base.layers:
layer.trainable = False
x = conv_base.output
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(128, activation='relu')(x)
predictions = layers.Dense(31, activation='softmax')(x)
model = Model(conv_base.input, predictions)
# here you will write the path for train data or if you create your val data then you can test using that too.
# test_dir = ""
test_datagen = ImageDataGenerator(rescale=1. / 255)
test_generator = test_datagen.flow_from_directory(
data,
target_size=(256, 256), classes=['airplane','airport','baseball_diamond',
'basketball_court','beach','bridge',
'chaparral','church','circular_farmland',
'commercial_area','dense_residential','desert',
'forest','freeway','golf_course','ground_track_field',
'harbor','industrial_area','intersection','island',
'lake','meadow','medium_residential','mobile_home_park',
'mountain','overpass','parking_lot','railway','rectangular_farmland',
'roundabout','runway'],batch_size=1,shuffle=True)
model.compile(loss='categorical_crossentropy',optimizer='Adam',metrics=['accuracy'])
model.fit_generator(train_set,steps_per_epoch=1488//31,epochs=10,verbose=True,validation_data = test_generator,
validation_steps = test_generator .samples // 31)
Epoch 1/10
48/48 [==============================] - 27s 553ms/step - loss: 1.9631 - acc: 0.4825 - val_loss: 4.3134 - val_acc: 0.0208
Epoch 2/10
48/48 [==============================] - 22s 456ms/step - loss: 0.6395 - acc: 0.8212 - val_loss: 4.7584 - val_acc: 0.0833
Epoch 3/10
48/48 [==============================] - 23s 482ms/step - loss: 0.4325 - acc: 0.8810 - val_loss: 5.3852 - val_acc: 0.0625
Epoch 4/10
48/48 [==============================] - 23s 476ms/step - loss: 0.2925 - acc: 0.9153 - val_loss: 6.0963 - val_acc: 0.0208
Epoch 5/10
48/48 [==============================] - 23s 477ms/step - loss: 0.2275 - acc: 0.9341 - val_loss: 5.6571 - val_acc: 0.0625
Epoch 6/10
48/48 [==============================] - 23s 478ms/step - loss: 0.1855 - acc: 0.9489 - val_loss: 6.2440 - val_acc: 0.0208
Epoch 7/10
48/48 [==============================] - 23s 483ms/step - loss: 0.1704 - acc: 0.9543 - val_loss: 7.4446 - val_acc: 0.0208
Epoch 8/10
48/48 [==============================] - 23s 487ms/step - loss: 0.1828 - acc: 0.9476 - val_loss: 7.5198 - val_acc: 0.0417
В чем может быть причина?!