Это небольшой пример. Вы можете использовать custom callbacks
, внутри которого вы можете получить доступ к весам модели по слоям (включая активации (layers.Activation
)). Просто измените в зависимости от ваших потребностей.
Это напечатает веса после каждой эпохи, вы можете построить их / сохранить их или выполнить любые операции с ними, если хотите.
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
import tensorflow as tf
import numpy as np
from keras.callbacks import LambdaCallback
model=Sequential()
model.add(Dense(32,activation='linear',input_shape=(37,10)))
model.add(Dense(32,activation='linear'))
model.add(Dense(10,activation='linear'))
model.compile(loss='mse',optimizer=Adam(lr=.001),metrics=['accuracy'])
model.summary()
class MyCustomCallback(tf.keras.callbacks.Callback):
def on_train_batch_begin(self, batch, logs=None):
print(model.layers[0].get_weights())
def on_train_batch_end(self, batch, logs=None):
print(model.layers[0].get_weights())
def on_test_batch_begin(self, batch, logs=None):
pass
def on_test_batch_end(self, batch, logs=None):
pass
X_train = np.zeros((10,37,10))
y_train = np.zeros((10,37,10))
weight_print = MyCustomCallback()
model.fit(X_train,
y_train,
batch_size=32,
epochs=5,
callbacks = [weight_print])