У меня есть 3D-изображение и три ядра k1, k2, k3 в направлении x, y и z.
img = np.random.rand(64, 64, 54) #three dimensional image
k1 = np.array([0.114, 0.141, 0.161, 0.168, 0.161, 0.141, 0.114]) #the kernel along the 1st dimension
k2 = k1 #the kernel along the 2nd dimension
k3 = k1 #the kernel along the 3nd dimension
Я могу использовать numpy.convolve
итеративно для вычисления свертки следующим образом:
for i in np.arange(img.shape[0])
for j in np.arange(img.shape[1])
oneline=img[i,j,:]
img[i,j,:]=np.convolve(oneline, k1, mode='same')
for i in np.arange(img.shape[1])
for j in np.arange(img.shape[2])
oneline=img[:,i,j]
img[:,i,j]=np.convolve(oneline, k2, mode='same')
for i in np.arange(img.shape[0])
for j in np.arange(img.shape[2])
oneline=img[i,:,j]
img[i,:,j]=np.convolve(oneline, k3, mode='same')
Есть ли более простой способ сделать это? Спасибо.