Создать временные ряды с отставанием / опережением по группам в Юлии? - PullRequest
4 голосов
/ 05 апреля 2020

Мне интересно, есть ли простой способ создать задержку (или опережение) переменной временного ряда в Юлии в соответствии с группой или условием? Например: у меня есть набор данных следующей формы

julia> df1 = DataFrame(var1=["a","a","a","a","b","b","b","b"],
                             var2=[0,1,2,3,0,1,2,3])
8×2 DataFrame
│ Row │ var1   │ var2  │
│     │ String │ Int64 │
├─────┼────────┼───────┤
│ 1   │ a      │ 0     │
│ 2   │ a      │ 1     │
│ 3   │ a      │ 2     │
│ 4   │ a      │ 3     │
│ 5   │ b      │ 0     │
│ 6   │ b      │ 1     │
│ 7   │ b      │ 2     │
│ 8   │ b      │ 3     │

И я хочу создать переменную lag2, содержащую значения в var2 с задержкой на 2. Однако это должно быть сгруппировано по var1, так что первые два наблюдения в группе 'b' не получают последние два значения группы 'a'. Скорее они должны быть установлены как отсутствующие или равные нулю или какому-либо значению по умолчанию.

Я пробовал следующий код, который выдает следующую ошибку.

julia> df2 = df1 |> @groupby(_.var1) |> @mutate(lag2 = lag(_.var2,2)) |> DataFrame

ERROR: MethodError: no method matching merge(::Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}}, ::NamedTuple{(:lag2,),Tuple{ShiftedArray{Int64,Missing,1,QueryOperators.GroupColumnArrayView{Int64,Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}},:var2}}}})
Closest candidates are:
  merge(::NamedTuple{,T} where T<:Tuple, ::NamedTuple) at namedtuple.jl:245
  merge(::NamedTuple{an,T} where T<:Tuple, ::NamedTuple{bn,T} where T<:Tuple) where {an, bn} at namedtuple.jl:233
  merge(::NamedTuple, ::NamedTuple, ::NamedTuple...) at namedtuple.jl:249
  ...
Stacktrace:
 [1] (::var"#437#442")(::Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}}) at /Users/kayvon/.julia/packages/Query/AwBtd/src/query_translation.jl:58
 [2] iterate at /Users/kayvon/.julia/packages/QueryOperators/g4G21/src/enumerable/enumerable_map.jl:25 [inlined]
 [3] iterate at /Users/kayvon/.julia/packages/Tables/TjjiP/src/tofromdatavalues.jl:45 [inlined]
 [4] buildcolumns at /Users/kayvon/.julia/packages/Tables/TjjiP/src/fallbacks.jl:185 [inlined]
 [5] columns at /Users/kayvon/.julia/packages/Tables/TjjiP/src/fallbacks.jl:237 [inlined]
 [6] #DataFrame#453(::Bool, ::Type{DataFrame}, ::QueryOperators.EnumerableMap{Union{},QueryOperators.EnumerableIterable{Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}},QueryOperators.EnumerableGroupBy{Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}},String,NamedTuple{(:var1, :var2),Tuple{String,Int64}},QueryOperators.EnumerableIterable{NamedTuple{(:var1, :var2),Tuple{String,Int64}},Tables.DataValueRowIterator{NamedTuple{(:var1, :var2),Tuple{String,Int64}},Tables.Schema{(:var1, :var2),Tuple{String,Int64}},Tables.RowIterator{NamedTuple{(:var1, :var2),Tuple{Array{String,1},Array{Int64,1}}}}}},var"#434#439",var"#435#440"}},var"#437#442"}) at /Users/kayvon/.julia/packages/DataFrames/S3ZFo/src/other/tables.jl:40
 [7] DataFrame(::QueryOperators.EnumerableMap{Union{},QueryOperators.EnumerableIterable{Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}},QueryOperators.EnumerableGroupBy{Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}},String,NamedTuple{(:var1, :var2),Tuple{String,Int64}},QueryOperators.EnumerableIterable{NamedTuple{(:var1, :var2),Tuple{String,Int64}},Tables.DataValueRowIterator{NamedTuple{(:var1, :var2),Tuple{String,Int64}},Tables.Schema{(:var1, :var2),Tuple{String,Int64}},Tables.RowIterator{NamedTuple{(:var1, :var2),Tuple{Array{String,1},Array{Int64,1}}}}}},var"#434#439",var"#435#440"}},var"#437#442"}) at /Users/kayvon/.julia/packages/DataFrames/S3ZFo/src/other/tables.jl:31
 [8] |>(::QueryOperators.EnumerableMap{Union{},QueryOperators.EnumerableIterable{Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}},QueryOperators.EnumerableGroupBy{Grouping{String,NamedTuple{(:var1, :var2),Tuple{String,Int64}}},String,NamedTuple{(:var1, :var2),Tuple{String,Int64}},QueryOperators.EnumerableIterable{NamedTuple{(:var1, :var2),Tuple{String,Int64}},Tables.DataValueRowIterator{NamedTuple{(:var1, :var2),Tuple{String,Int64}},Tables.Schema{(:var1, :var2),Tuple{String,Int64}},Tables.RowIterator{NamedTuple{(:var1, :var2),Tuple{Array{String,1},Array{Int64,1}}}}}},var"#434#439",var"#435#440"}},var"#437#442"}, ::Type) at ./operators.jl:854
 [9] top-level scope at none:0

Оцените любую помощь с этим подходом или альтернативными подходами , Спасибо.

1 Ответ

4 голосов
/ 05 апреля 2020

У вас определенно была правильная идея - я не работаю с Query.jl, но это легко сделать с помощью синтаксиса basi c DataFrames:

julia> using DataFrames, ShiftedArrays

julia> df1 = DataFrame(var1=["a","a","a","a","b","b","b","b"],
                                    var2=[0,1,2,3,0,1,2,3]);

julia> by(df1, :var1, var2_l2 = :var2 => Base.Fix2(lag, 2)))
8×2 DataFrame
│ Row │ var1   │ var2_l2 │
│     │ String │ Int64⍰  │
├─────┼────────┼─────────┤
│ 1   │ a      │ missing │
│ 2   │ a      │ missing │
│ 3   │ a      │ 0       │
│ 4   │ a      │ 1       │
│ 5   │ b      │ missing │
│ 6   │ b      │ missing │
│ 7   │ b      │ 0       │
│ 8   │ b      │ 1       │

Обратите внимание, что я использовал Base.Fix2 здесь чтобы получить версию с одним аргументом lag. По сути, это то же самое, что и определение собственного l2(x) = lag(x, 2) с последующим использованием l2 в вызове by. Если вы определите свою собственную функцию l2, вы также можете установить значение по умолчанию, например l2(x) = lag(x, 2, default = -1000), если хотите избежать пропуска значений:

julia> l2(x) = lag(x, 2, default = -1000)
l2 (generic function with 1 method)

julia> by(df1, :var1, var2_l2 = :var2 => l2)
8×2 DataFrame
│ Row │ var1   │ var2_l2 │
│     │ String │ Int64   │
├─────┼────────┼─────────┤
│ 1   │ a      │ -1000   │
│ 2   │ a      │ -1000   │
│ 3   │ a      │ 0       │
│ 4   │ a      │ 1       │
│ 5   │ b      │ -1000   │
│ 6   │ b      │ -1000   │
│ 7   │ b      │ 0       │
│ 8   │ b      │ 1       │

...