моя проблема сводится к нахождению вектора X с наилучшим решением проблемы: L - прибыль, R - ограничения, P - матрица параметров ограничений,
или макс (т (л)% *% X)
- ограничение
- SUM_i (x_i * p_ij) <= r_j </li>
или P% *% X <= R. </p>
Я нашел решение для X, но не лучшее, которое было бы fb = c (.217,0,0,23,2865,0,13,427). Как мне найти лучшее решение?
код:
X<-matrix(rep(1,6),6,1)
P<-matrix(c(
1, 1, 1, 2, 0, 0,
0, 1, 1, 2, 1, 1,
99.4, 37.75, 19.75, 54.40, 74.75, 53,
2.400, 1.540, 0, 0, 0, 0,
2.400, 1.960, 0, 0, 0, 0,
1.800, 3.300, 5.330, 0, 0, 0,
0, 0, 2.070, 0, 8.700, 0,
0, 0, .436, 0, 19.100, 12.363,
0, 3.000, .364, 0, 9.100, 26.737 ),
9,6,1)
L <- matrix(c(83.4, 72.35, 27.3, 72.05, 217.25, 455), 6,1)
R <- matrix(c(60,60,2000,351,448,479,338,424,359),9,1)
farm<- function(par, P,R, L){
trues<- P%*%par<=R
if (min(trues)==1 && min(par)>=0) {
return(-t(L)%*%par)
}
else{
return(0)
}
}
mtds = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN","Brent")
out <- optim(par = X, # initial guess
fn = farm,
P = P,
R = R ,
L = L,
method = mtds[5])
# my result
t(L)%*%out$par
#A matrix: 1 × 1 of type dbl
#7419.596
# the first best
fb<- matrix(c(.217,0,0,23.2865,0,13.427),6,1)
t(L)%*%fb
#A matrix: 1 × 1 of type dbl
#7805.175