Потери SSD в PyTorch не уменьшаются - PullRequest
1 голос
/ 26 апреля 2020

Я использую SSD (Single Shot Detector) для обучения в PyTorch. Тем не менее, моя потеря тренировок не уменьшилась ... Я искал и пробовал различные решения в течение недели, но проблема все еще остается.

Что мне делать? Моя функция потерь неверна?

Вот моя модель SSD300

SSD300(
  (feature_layers): ModuleDict(
    (conv1_1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu1_1): ReLU()
    (conv1_2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu1_2): ReLU()
    (pool1): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
    (conv2_1): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu2_1): ReLU()
    (conv2_2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu2_2): ReLU()
    (pool2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
    (conv3_1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu3_1): ReLU()
    (conv3_2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu3_2): ReLU()
    (conv3_3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu3_3): ReLU()
    (pool3): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=True)
    (conv4_1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu4_1): ReLU()
    (conv4_2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu4_2): ReLU()
    (conv4_3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu4_3): ReLU()
    (pool4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
    (conv5_1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu5_1): ReLU()
    (conv5_2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu5_2): ReLU()
    (conv5_3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu5_3): ReLU()
    (pool5): MaxPool2d(kernel_size=(3, 3), stride=(1, 1), padding=1, dilation=1, ceil_mode=False)
    (conv6): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6))
    (relu6): ReLU()
    (conv7): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
    (relu7): ReLU()
    (conv8_1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
    (relu8_1): ReLU()
    (conv8_2): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    (relu8_2): ReLU()
    (conv9_1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
    (relu9_1): ReLU()
    (conv9_2): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    (relu9_2): ReLU()
    (conv10_1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
    (relu10_1): ReLU()
    (conv10_2): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
    (relu10_2): ReLU()
    (conv11_1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
    (relu11_1): ReLU()
    (conv11_2): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
    (relu11_2): ReLU()
  )
  (localization_layers): ModuleDict(
    (loc1): Sequential(
      (l2norm_loc1): L2Normalization()
      (conv_loc1): Conv2d(512, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_loc1): ReLU()
    )
    (loc2): Sequential(
      (conv_loc2): Conv2d(1024, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_loc2): ReLU()
    )
    (loc3): Sequential(
      (conv_loc3): Conv2d(512, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_loc3): ReLU()
    )
    (loc4): Sequential(
      (conv_loc4): Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_loc4): ReLU()
    )
    (loc5): Sequential(
      (conv_loc5): Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_loc5): ReLU()
    )
    (loc6): Sequential(
      (conv_loc6): Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_loc6): ReLU()
    )
  )
  (confidence_layers): ModuleDict(
    (conf1): Sequential(
      (l2norm_conf1): L2Normalization()
      (conv_conf1): Conv2d(512, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_conf1): ReLU()
    )
    (conf2): Sequential(
      (conv_conf2): Conv2d(1024, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_conf2): ReLU()
    )
    (conf3): Sequential(
      (conv_conf3): Conv2d(512, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_conf3): ReLU()
    )
    (conf4): Sequential(
      (conv_conf4): Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_conf4): ReLU()
    )
    (conf5): Sequential(
      (conv_conf5): Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_conf5): ReLU()
    )
    (conf6): Sequential(
      (conv_conf6): Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (relu_conf6): ReLU()
    )
  )
  (predictor): Predictor()
)

Моя функция потерь определена как:

class SSDLoss(nn.Module):
    def __init__(self, alpha=1, matching_func=None, loc_loss=None, conf_loss=None):
        super().__init__()

        self.alpha = alpha
        self.matching_strategy = matching_strategy if matching_func is None else matching_func
        self.loc_loss = LocalizationLoss() if loc_loss is None else loc_loss
        self.conf_loss = ConfidenceLoss() if conf_loss is None else conf_loss


    def forward(self, predicts, gts, dboxes):
        """
        :param predicts: Tensor, shape is (batch, total_dbox_nums, 4+class_nums=(cx, cy, w, h, p_class,...)
        :param gts: Tensor, shape is (batch*bbox_nums(batch), 1+4+class_nums) = [[img's_ind, cx, cy, w, h, p_class,...],..
        :param dboxes: Tensor, shape is (total_dbox_nums, 4=(cx,cy,w,h))
        :return:
            loss: float
        """
        # get predict's localization and confidence
        pred_loc, pred_conf = predicts[:, :, :4], predicts[:, :, 4:]

        # matching
        pos_indicator, gt_loc, gt_conf = self.matching_strategy(gts, dboxes, batch_num=predicts.shape[0], threshold=0.5)

        # calculate ground truth value considering default boxes
        gt_loc = gt_loc_converter(gt_loc, dboxes)

        # Localization loss
        loc_loss = self.loc_loss(pos_indicator, pred_loc, gt_loc)

        # Confidence loss
        conf_loss = self.conf_loss(pos_indicator, pred_conf, gt_conf)

        return conf_loss + self.alpha * loc_loss


class LocalizationLoss(nn.Module):
    def __init__(self):
        super().__init__()
        self.smoothL1Loss = nn.SmoothL1Loss(reduction='none')

    def forward(self, pos_indicator, predicts, gts):
        N = pos_indicator.sum()

        total_loss = self.smoothL1Loss(predicts, gts).sum(dim=-1) # shape = (batch num, dboxes num)
        loss = total_loss.masked_select(pos_indicator)

        return loss.sum() / N

class ConfidenceLoss(nn.Module):
    def __init__(self, neg_factor=3):
        """
        :param neg_factor: int, the ratio(1(pos): neg_factor) to learn pos and neg for hard negative mining
        """
        super().__init__()
        self.logsoftmax = nn.LogSoftmax(dim=-1)
        self._neg_factor = neg_factor

    def forward(self, pos_indicator, predicts, gts):

        loss = (-gts * self.logsoftmax(predicts)).sum(dim=-1) # shape = (batch num, dboxes num)

        N = pos_indicator.sum()
        neg_indicator = torch.logical_not(pos_indicator)

        pos_loss = loss.masked_select(pos_indicator)
        neg_loss = loss.masked_select(neg_indicator)

        neg_num = neg_loss.shape[0]
        neg_num = min(neg_num, self._neg_factor * N)

        _, topk_indices = torch.topk(neg_loss, neg_num)
        neg_loss = neg_loss.index_select(dim=0, index=topk_indices)

        return (pos_loss.sum() + neg_loss.sum()) / N

выход потери ниже;

Training... Epoch: 1, Iter: 1,   [32/21503   (0%)]  Loss: 28.804445
Training... Epoch: 1, Iter: 10,  [320/21503  (1%)]  Loss: 12.880742
Training... Epoch: 1, Iter: 20,  [640/21503  (3%)]  Loss: 15.932519
Training... Epoch: 1, Iter: 30,  [960/21503  (4%)]  Loss: 14.624641
Training... Epoch: 1, Iter: 40,  [1280/21503     (6%)]  Loss: 16.301014
Training... Epoch: 1, Iter: 50,  [1600/21503     (7%)]  Loss: 15.710087
Training... Epoch: 1, Iter: 60,  [1920/21503     (9%)]  Loss: 12.441727
Training... Epoch: 1, Iter: 70,  [2240/21503     (10%)] Loss: 12.283393
Training... Epoch: 1, Iter: 80,  [2560/21503     (12%)] Loss: 12.272835
Training... Epoch: 1, Iter: 90,  [2880/21503     (13%)] Loss: 12.273635
Training... Epoch: 1, Iter: 100,     [3200/21503     (15%)] Loss: 12.273409
Training... Epoch: 1, Iter: 110,     [3520/21503     (16%)] Loss: 12.266172
Training... Epoch: 1, Iter: 120,     [3840/21503     (18%)] Loss: 12.272820
Training... Epoch: 1, Iter: 130,     [4160/21503     (19%)] Loss: 12.274920
Training... Epoch: 1, Iter: 140,     [4480/21503     (21%)] Loss: 12.275247
Training... Epoch: 1, Iter: 150,     [4800/21503     (22%)] Loss: 12.273258
Training... Epoch: 1, Iter: 160,     [5120/21503     (24%)] Loss: 12.277486
Training... Epoch: 1, Iter: 170,     [5440/21503     (25%)] Loss: 12.266512
Training... Epoch: 1, Iter: 180,     [5760/21503     (27%)] Loss: 12.265674
Training... Epoch: 1, Iter: 190,     [6080/21503     (28%)] Loss: 12.265306
Training... Epoch: 1, Iter: 200,     [6400/21503     (30%)] Loss: 12.269717
Training... Epoch: 1, Iter: 210,     [6720/21503     (31%)] Loss: 12.274122
Training... Epoch: 1, Iter: 220,     [7040/21503     (33%)] Loss: 12.263970
Training... Epoch: 1, Iter: 230,     [7360/21503     (34%)] Loss: 12.267252

1 Ответ

0 голосов
/ 01 мая 2020

Я должен нормализовать предсказанные блоки перед вычислением функции потерь.

Слово дисперсии, которое может ввести в заблуждение ... ссылка

class Encoder(nn.Module):
    def __init__(self, norm_means=(0, 0, 0, 0), norm_stds=(0.1, 0.1, 0.2, 0.2)):
        super().__init__()
        # shape = (1, 1, 4=(cx, cy, w, h)) or (1, 1, 1)
        self.norm_means = torch.tensor(norm_means, requires_grad=False).unsqueeze(0).unsqueeze(0)
        self.norm_stds = torch.tensor(norm_stds, requires_grad=False).unsqueeze(0).unsqueeze(0)


    def forward(self, gt_boxes, default_boxes):
        """
        :param gt_boxes: Tensor, shape = (batch, default boxes num, 4)
        :param default_boxes: Tensor, shape = (default boxes num, 4)
        Note that 4 means (cx, cy, w, h)
        :return:
            encoded_boxes: Tensor, calculate ground truth value considering default boxes. The formula is below;
                           gt_cx = (gt_cx - dbox_cx)/dbox_w, gt_cy = (gt_cy - dbox_cy)/dbox_h,
                           gt_w = train(gt_w / dbox_w), gt_h = train(gt_h / dbox_h)
                           shape = (batch, default boxes num, 4)
        """
        assert gt_boxes.shape[1:] == default_boxes.shape, "gt_boxes and default_boxes must be same shape"

        gt_cx = (gt_boxes[:, :, 0] - default_boxes[:, 0]) / default_boxes[:, 2]
        gt_cy = (gt_boxes[:, :, 1] - default_boxes[:, 1]) / default_boxes[:, 3]
        gt_w = torch.log(gt_boxes[:, :, 2] / default_boxes[:, 2])
        gt_h = torch.log(gt_boxes[:, :, 3] / default_boxes[:, 3])

        encoded_boxes = torch.cat((gt_cx.unsqueeze(2),
                          gt_cy.unsqueeze(2),
                          gt_w.unsqueeze(2),
                          gt_h.unsqueeze(2)), dim=2)

        # normalization
        return (encoded_boxes - self.norm_means.to(gt_boxes.device)) / self.norm_stds.to(gt_boxes.device) <<<<<<<<<<<<< answer!!

...