Я пытаюсь реализовать свою первую модель керас. Я следовал этому учебнику
Я использую следующие версии модулей:
scipy: 1.4.1
numpy: 1.18.1
matplotlib: 3.1.3
pandas: 1.0.3
statsmodels: 0.11.0
sklearn: 0.22.1
Using TensorFlow backend.
keras: 2.3.1
Это код моего createmodel.py
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
img_rows, img_cols = 28, 28
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
x_train = x_train / 255
x_test = x_test / 255
from keras.utils import to_categorical
num_classes = 10
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(img_rows, img_cols, 1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
batch_size = 128
epochs = 10
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
model.save("test_model.h5")
Но когда я запускаю скрипт, я получаю следующую ошибку, когда модель обучается (в строке model.fit):
ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (10,)
Я понимаю, что у меня есть несоответствие в измерениях массива. Но так как я новичок в keras и python, мне нужен кикстарт от вас. Спасибо за помощь!