Я создал модель кластеризации, чтобы попытаться найти различные группы клиентов на основе годового дохода и оценки расходов, используя алгоритм KMeans из Scikit-Learn. Используя значение кластера, которое он возвращал каждому клиенту, я попытался создать модель классификации с использованием вспомогательной векторной классификации из sklearn.svm. Однако, когда я попытался вписать новую модель в набор данных, я получил сообщение об ошибке:
File "/Users/user/Documents/Machine Learning A-Z Template Folder/Part 4 - Clustering/Section 24 - K-Means Clustering/cluster_and_prediction.py", line 28, in <module>
classifier.fit(x_train, y_train)
File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/sklearn/svm/_base.py", line 149, in fit
y = self._validate_targets(y)
File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/sklearn/svm/_base.py", line 525, in _validate_targets
check_classification_targets(y)
File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/sklearn/utils/multiclass.py", line 169, in check_classification_targets
raise ValueError("Unknown label type: %r" % y_type)
ValueError: Unknown label type: 'continuous'
Мой код выглядит следующим образом
import pandas as pd
import numpy as np
# Using relevant columns from dataset
dataset = pd.read_csv('Mall_Customers.csv')
x = dataset.iloc[:, 3:5].values
# Creating model with ideal amount of clusters
kmeans = KMeans(n_clusters=5, init='k-means++', max_iter=300, n_init=10, random_state=0)
kmeans.fit(x)
predictions = kmeans.predict(x)
# Creating numpy array for feature scaling
predictions = np.array(predictions, dtype=int)
predictions = predictions[:, None]
from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()
sc_y = StandardScaler()
x = sc_x.fit_transform(x)
predictions = sc_y.fit_transform(predictions)
# Splitting dataset into training and test sets
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, predictions, test_size=.25)
# Creating Support Vector Classification model
from sklearn.svm import SVC
classifier = SVC(kernel='rbf')
classifier.fit(x_train, y_train)
Колено Модель используется для Кластеризация
Кластеризация визуализации
.zip файл с набором данных (набор данных называется 'Mall_Customers.csv'
Как я могу это исправить?