Одна из проблем в том, что вы подходите 1/m
. Хотя это правильно с точки зрения физики, это плохо с точки зрения алгоритма. Если алгоритму подбора необходимо изменить знак для значений m
около нуля, коэффициенты расходятся. Следовательно, лучше подгонять mI = 1/m
и делать соответствующие ошибки позже. Здесь я использую leastsq
, что требует дополнительных вычислений для ковариационной матрицы (поскольку она возвращает уменьшенную форму). Я подгоняю g()
и инверсные массы, но вы можете немедленно воспроизвести свои проблемы, введя f()
и непосредственно подгоняя m
s.
Второй момент заключается в том, что данные имеют смещение Т.е. если x = y = z = 0
, то данные v= -0.0195
Это необходимо ввести в модель.
Наконец, я бы сказал, что у вас уже есть не параболическое поведение c в ваших данных.
Тем не менее, вот как это выглядит:
import matplotlib.pyplot as plt
import numpy as np
np.set_printoptions(linewidth=300)
from scipy.optimize import leastsq
from scipy.optimize import curve_fit
data = np.loadtxt( "silicon.csv", delimiter=',' )
def f( x, y, z, mxx, mxy, mxz, myy, myz, mzz, offI ):
out = 1./(2 * mxx) * x * x
out += 1./( mxy ) * x * y
out += 1./( mxz ) * x * z
out += 1./( 2 * myy ) * y * y
out += 1./( myz ) * y * z
out += 1./( 2 * mzz ) * z * z
out += 1./offI
return out
def g( x, y, z, mxxI, mxyI, mxzI, myyI, myzI, mzzI, off ):
out = mxxI / 2 * x * x
out += mxyI * x * y
out += mxzI * x * z
out += myyI / 2 * y * y
out += myzI * y * z
out += mzzI / 2 * z * z
out += off
return out
def residuals( params, indata ):
out = list()
for x, y, z, v in indata:
out.append( v - g( x,y, z, *params ) )
return out
sol, cov, info, msg, ier = leastsq( residuals, 7*[0], args=( data, ), full_output=True)
s_sq = sum( [x**2 for x in residuals( sol, data) ] )/ (len( data ) - len( sol ) )
print "solution"
print sol
masses = [1/x for x in sol]
print "masses:"
print masses
print "covariance matrix:"
covMX = cov * s_sq
print covMX
print "sum of residuals"
print sum( residuals( sol, data) )
### plotting the cuts
fig = plt.figure('cuts')
ax = dict()
for i in range( 1, 10 ):
ax[i] = fig.add_subplot( 3, 3, i )
dl = np.linspace( -.2, .2, 25)
#### xx
xdata = [ [ x, v ] for x,y,z,v in data if ( abs(y)<1e-3 and abs(z) < 1e-3 ) ]
vl = np.fromiter( ( f( x, 0, 0, *masses ) for x in dl ), np.float )
ax[1].plot( *zip(*sorted( xdata ) ), ls='', marker='o')
ax[1].plot( dl, vl )
#### xy
xydata = [ [ x, v ] for x, y, z, v in data if ( abs( x - y )<1e-2 and abs(z) < 1e-3 ) ]
vl = np.fromiter( ( f( xy, xy, 0, *masses ) for xy in dl ), np.float )
ax[2].plot( *zip(*sorted( xydata ) ), ls='', marker='o')
ax[2].plot( dl, vl )
#### xz
xzdata = [ [ x, v ] for x, y, z, v in data if ( abs( x - z )<1e-2 and abs(y) < 1e-3 ) ]
vl = np.fromiter( ( f( xz, 0, xz, *masses ) for xz in dl ), np.float )
ax[3].plot( *zip(*sorted( xzdata ) ), ls='', marker='o')
ax[3].plot( dl, vl )
#### yy
ydata = [ [ y, v ] for x, y, z, v in data if ( abs(x)<1e-3 and abs(z) < 1e-3 ) ]
vl = np.fromiter( ( f( 0, y, 0, *masses ) for y in dl ), np.float )
ax[5].plot( *zip(*sorted( ydata ) ), ls='', marker='o' )
ax[5].plot( dl, vl )
#### yz
yzdata = [ [ y, v ] for x, y, z, v in data if ( abs( y - z )<1e-2 and abs(x) < 1e-3 ) ]
vl = np.fromiter( ( f( 0, yz, yz, *masses ) for yz in dl ), np.float )
ax[6].plot( *zip(*sorted( yzdata ) ), ls='', marker='o')
ax[6].plot( dl, vl )
#### zz
zdata = [ [ z, v ] for x, y, z, v in data if ( abs(x)<1e-3 and abs(y) < 1e-3 ) ]
vl = np.fromiter( ( f( 0, 0, z, *masses ) for z in dl ), np.float )
ax[9].plot( *zip(*sorted( zdata ) ), ls='', marker='o' )
ax[9].plot( dl, vl )
#### some diag
ddata = [ [ z, v ] for x, y, z, v in data if ( abs(x - y)<1e-3 and abs(x - z) < 1e-3 ) ]
vl = np.fromiter( ( f( d, d, d, *masses ) for d in dl ), np.float )
ax[7].plot( *zip(*sorted( ddata ) ), ls='', marker='o' )
ax[7].plot( dl, vl )
#### some other diag
ddata = [ [ z, v ] for x, y, z, v in data if ( abs(x - y)<1e-3 and abs(x + z) < 1e-3 ) ]
vl = np.fromiter( ( f( d, d, -d, *masses ) for d in dl ), np.float )
ax[8].plot( *zip(*sorted( ddata ) ), ls='', marker='o' )
ax[8].plot( dl, vl )
plt.show()
Это дает следующий вывод:
solution
[-1.46528595 0.25090717 0.25090717 -1.46528595 0.25090717 -1.46528595 -0.01993436]
masses:
[-0.6824606499739905, 3.985537743156507, 3.9855376943660676, -0.6824606473928339, 3.9855377322848344, -0.6824606467055248, -50.16463861555409]
covariance matrix:
[
[ 4.76417852e-03 -1.46907683e-12 -8.57639600e-12 -2.21281938e-12 -2.38444957e-12 8.42981521e-12 -2.70034183e-05]
[-1.46907683e-12 9.17104397e-04 -7.10573582e-13 1.32125214e-11 7.44553140e-12 1.29909935e-11 -1.11259046e-13]
[-8.57639600e-12 -7.10573582e-13 9.17104389e-04 -8.60004172e-12 -6.14797647e-12 8.27070243e-12 3.11127064e-14]
[-2.21281914e-12 1.32125214e-11 -8.60004172e-12 4.76417860e-03 -4.20477032e-12 9.20893224e-12 -2.70034186e-05]
[-2.38444957e-12 7.44553140e-12 -6.14797647e-12 -4.20477032e-12 9.17104395e-04 1.50963408e-11 -7.28889534e-14]
[ 8.42981530e-12 1.29909935e-11 8.27070243e-12 9.20893175e-12 1.50963408e-11 4.76417849e-03 -2.70034182e-05]
[-2.70034183e-05 -1.11259046e-13 3.11127064e-14 -2.70034186e-05 -7.28889534e-14 -2.70034182e-05 5.77019926e-07]
]
sum of residuals
4.352727352163743e-09
... и здесь некоторые 1d срезы, которые показывают некоторое существенное отклонение от поведения параболи c, если один не находится на одной из главных осей.