Я построил эту модель acousti c с функциями dim = [1124823,13] и метками dim = [1124823,1], и я разделил их на train, test и dev. Проблема в том, что когда я пытаюсь запустить мою модель, я получаю эту ошибку
RuntimeError: ожидаемый скалярный тип Long, но найденный Int в
loss = критерий (выходы, y_train)
import torch
import torch.nn as nn
from fela import feat, labels
from Dataloader import train_loader, test_loader, X_train, X_test, X_val, y_train, y_test, y_val
################################################################################################
input_size = 13
hidden1_size = 13
hidden2_size = 128
hidden3_size = 64
output_size = 50
################################################################################################
class DNN(nn.Module):
def __init__(self, input_size, hidden2_size, hidden3_size, output_size):
super(DNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden1_size)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(hidden2_size, hidden3_size)
self.relu3 = nn.ReLU()
self.fc4 = nn.Linear(hidden3_size, output_size)
self.relu4 = nn.ReLU()
def forward(self, x):
out = self.fc1(x)
out = self.relu1(out)
out = self.fc2(out)
out = self.relu2(out)
out = self.fc3(out)
out = self.relu3(out)
out = self.fc4(out)
out = self.relu4(out)
return out
################################################################################################
# Instantiate the model
batch_size = 50
n_iterations = 50
no_epochs = 80
model = DNN(input_size, hidden2_size, hidden3_size, output_size)
################################################################################################
# Define the loss criterion and optimizer
criterion = nn.CrossEntropyLoss()
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
print(model)
########################################################################################################################
# train the network
iter = 0
for epoch in range(no_epochs):
for i, (X_train, y_train) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(X_train)
loss = criterion(outputs, torch.max(labels, 1)[1])
loss.backward()
optimizer.step()
iter += 1
if iter % 500 == 0:
correct = 0
total = 0
for X_test, y_test in test_loader:
outputs = model(X_test)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
accuracy = 100 * correct / total
print(iter, loss.data[0], accuracy)