Как добавить легенду в ggplot с двойной осью Y в R> - PullRequest
3 голосов
/ 06 апреля 2020

Я пытаюсь найти способ добавить легенды к моей фигуре ggplot. Я пробовал несколько способов, но ни один из них не позволит появиться легенде. Вот набор данных, который я использую. Ниже приведен код, который я написал до сих пор.

library(dplyr)
library(tidyr)
library(ggplot2)
library(lubridate)
library(ggthemes)

stock %>%
  drop_na(disease, US_Stock, China_Stock) %>%
  filter(disease == "Ebola") %>%
  ggplot(aes(x = date)) + 
    geom_line(aes(y = US_Stock), size = 0.5, col = "dark green") +
    geom_line(aes(y = China_Stock/5+1500), size = 0.5, col = "red") +
    scale_x_date(name = "Date") +
    scale_y_continuous(name = "US Stock Market (S&P 500)", 
                       sec.axis = sec_axis(~(.-1500)*5, name = "China Stock Market (CSI300)")) +
    labs(title = "Figure 3: Stock Market under Ebola", caption = "Death Rate: 50%-90%")  +
    theme_stata() 

Вот несколько наблюдений в моих данных.

Ответы [ 2 ]

2 голосов
/ 06 апреля 2020

Я предпочитаю переформировать все акции в одну колонку, так как это облегчает легенды и другую эстетику. Я также использовал среднее значение для определения отношения, что делает график немного более интересным. (Но мне не нравятся двойные оси).

library(dplyr)
library(tidyr)
library(ggplot2)
library(lubridate)
library(ggthemes)
ratio = mean(stock$China_Stock)/mean(stock$US_Stock)

stock %>%
  mutate(China_Stock=China_Stock / ratio) %>%
  pivot_longer(cols=ends_with("Stock"), names_pattern="(.+)_(Stock)",
               names_to = c("Country", ".value")) %>%
  ggplot(aes(x = date, y=Stock, col=Country)) + 
  geom_line(size = 0.5) +
  scale_color_manual(values=c("darkgreen","red")) +
  labs(title = "Figure 3: Stock Market under Ebola", caption = "Death Rate: 50%-90%") +
  scale_y_continuous(name = "US Stock Market (S&P 500)", 
                       sec.axis = sec_axis(~.*ratio, name = "China Stock Market (CSI300)")) +
  theme_minimal() 

enter image description here


Данные:

stock <- structure(list(ID = 131:140, date = structure(c(11878, 11879, 
                                                        11880, 11883, 11884, 11885, 11886, 11887, 11890, 11891), class = "Date"), 
                       US_Stock = c(920.47, 927.37, 921.39, 917.93, 901.05, 906.04, 
                                    881.56, 847.76, 819.85, 797.7), China_Stock = c(1392.9, 1390.93, 
                                                                                    1389.45, 1379.38, 1382.41, 1393.02, 1397.41, 1403.25, 1380.28, 
                                                                                    1375.61), disease = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                                                                                                                    1L, 1L, 1L), .Label = "SARS", class = "factor")), class = "data.frame", row.names = c(NA, 
                                                                                                                                                                                                          -10L))
1 голос
/ 06 апреля 2020

Вы были довольно близко. Я обычно устанавливаю соотношение заранее.

library(dplyr)
library(ggplot2)
library(ggthemes)
ratio = max(data$China_Stock)/max(data$US_Stock)
stock %>% ggplot(aes(x=date)) +
  geom_line(aes(y = US_Stock * ratio), size = 0.5, col = "dark green") +
  geom_line(aes(y = China_Stock), size = 0.5, col = "red") +
  scale_x_date(name = "Date") +
  scale_y_continuous(name = "China Stock Market (CSI300)",
                     sec.axis = sec_axis(~ . / ratio, name = "US Stock Market (S&P 500)")) +
  labs(title = "Figure 3: Stock Market under Ebola", caption = "Death Rate: 50%-90%") +
    theme_stata()

enter image description here

Данные

stock <- structure(list(ID = 131:140, date = structure(c(11878, 11879, 
11880, 11883, 11884, 11885, 11886, 11887, 11890, 11891), class = "Date"), 
    US_Stock = c(920.47, 927.37, 921.39, 917.93, 901.05, 906.04, 
    881.56, 847.76, 819.85, 797.7), China_Stock = c(1392.9, 1390.93, 
    1389.45, 1379.38, 1382.41, 1393.02, 1397.41, 1403.25, 1380.28, 
    1375.61), disease = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L), .Label = "SARS", class = "factor")), class = "data.frame", row.names = c(NA, 
-10L))
...