Вы можете использовать numpy и MultiLabelBinarizer.
import numpy as np
from sklearn.preprocessing import MultiLabelBinarizer
cat = np.array([['ok', 'ko', 'maybe', 'maybe']])
m = MultiLabelBinarizer()
print(m.fit_transform(cat.T))
Если вы все еще хотите придерживаться своего решения. Вам просто нужно обновить следующее:
# because of it still a row, not a column
# res = ct.fit_transform([cat]) => remove this
# it should works
res = ct.fit_transform(np.array([cat]).T)
Out[2]:
array([[0., 0., 1.],
[1., 0., 0.],
[0., 1., 0.],
[0., 1., 0.]])