В настоящее время прорабатывает учебник Стивена Марсланда «Машинное обучение: алгоритм c Перспектива». Я вставил следующий код в блокнот Jupyter, запустил его, и ничего не произошло. Очень плохо знакомы с ML, Python и Jupyter, поэтому любая помощь будет принята с благодарностью. Я понимаю идею персептрона и его концептуальную концепцию, но мне почему-то трудно переводить его в код.
import numpy as np
class pcn:
""" A basic Perceptron"""
def __init__(self,inputs,targets):
""" Constructor """
# Set up network size
if np.ndim(inputs)>1:
self.nIn = np.shape(inputs)[1]
else:
self.nIn = 1
if np.ndim(targets)>1:
self.nOut = np.shape(targets)[1]
else:
self.nOut = 1
self.nData = np.shape(inputs)[0]
# Initialise network
self.weights = np.random.rand(self.nIn+1,self.nOut)*0.1-0.05
def pcntrain(self,inputs,targets,eta,nIterations):
""" Train the thing """
# Add the inputs that match the bias node
inputs = np.concatenate((inputs,-np.ones((self.nData,1))),axis=1)
# Training
change = range(self.nData)
for n in range(nIterations):
self.activations = self.pcnfwd(inputs);
self.weights -= eta*np.dot(np.transpose(inputs),self.activations-targets)
# Randomise order of inputs
#np.random.shuffle(change)
#inputs = inputs[change,:]
#targets = targets[change,:]
return self.weights
def pcnfwd(self,inputs):
""" Run the network forward """
# Compute activations
activations = np.dot(inputs,self.weights)
# Threshold the activations
return np.where(activations>0,1,0)
def confmat(self,inputs,targets):
"""Confusion matrix"""
# Add the inputs that match the bias node
inputs = np.concatenate((inputs,-np.ones((self.nData,1))),axis=1)
outputs = np.dot(inputs,self.weights)
nClasses = np.shape(targets)[1]
if nClasses==1:
nClasses = 2
outputs = np.where(outputs>0,1,0)
else:
# 1-of-N encoding
outputs = np.argmax(outputs,1)
targets = np.argmax(targets,1)
cm = np.zeros((nClasses,nClasses))
for i in range(nClasses):
for j in range(nClasses):
cm[i,j] = np.sum(np.where(outputs==i,1,0)*np.where(targets==j,1,0))
print(cm)
print(np.trace(cm)/np.sum(cm))
def logic():
import pcn
""" Run AND and XOR logic functions"""
a = np.array([[0,0,0],[0,1,0],[1,0,0],[1,1,1]])
b = np.array([[0,0,0],[0,1,1],[1,0,1],[1,1,0]])
p = pcn.pcn(a[:,0:2],a[:,2:])
p.pcntrain(a[:,0:2],a[:,2:],0.25,10)
p.confmat(a[:,0:2],a[:,2:])
q = pcn.pcn(b[:,0:2],b[:,2:])
q.pcntrain(b[:,0:2],b[:,2:],0.25,10)
q.confmat(b[:,0:2],b[:,2:])