Когда я вычисляю начальный балл, большую часть времени я получаю NaN.
Пытаясь выяснить, почему это происходит, я обнаружил, что запуск сети дважды на одних и тех же изображениях может привести к тому, что некоторые изображения будут совершенно разными результаты (разница больше 0,9, в то время как максимальная разница может быть 1), изображения, получившие высокую разницу, менялись от запуска к запуску.
Мой GPU - 2080ti, я использую Ubuntu с tenorflow = 1.13.1. я пытаюсь изменить драйверы, версию tenorflow, запустить форму docker, одна и та же проблема возникает постоянно.
У меня есть другой сервер в университете с тем же графическим процессором (2080ti), и когда я пытаюсь бежать туда проблема исчезнет.
Спасибо за помощь.
мой скрипт
# Code derived from tensorflow/tensorflow/models/image/imagenet/classify_image.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
import sys
import warnings
from scipy import linalg
MODEL_DIR = '/tmp/imagenet'
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
softmax = None
pool3 = None
# Call this function with list of images. Each of elements should be a
# numpy array with values ranging from 0 to 255.
def get_features(images):
assert ((images.shape[3]) == 3)
assert (np.max(images) > 10)
assert (np.min(images) >= 0.0)
images = images.astype(np.float32)
bs = 100
sess = tf.get_default_session()
preds = []
for inp in np.array_split(images, round(images.shape[0] / bs)):
sys.stdout.write(".")
sys.stdout.flush()
pred = sess.run(softmax, {'InputTensor:0': inp})
preds.append(pred)
preds = np.concatenate(preds, 0)
return preds
# This function is called automatically.
def _init_inception():
global softmax
global pool3
if not os.path.exists(MODEL_DIR):
os.makedirs(MODEL_DIR)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(MODEL_DIR, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR)
with tf.gfile.GFile(os.path.join(
MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# Import model with a modification in the input tensor to accept arbitrary
# batch size.
input_tensor = tf.placeholder(tf.float32, shape=[None, None, None, 3],
name='InputTensor')
_ = tf.import_graph_def(graph_def, name='inception_v3',
input_map={'ExpandDims:0': input_tensor})
# Works with an arbitrary minibatch size.
pool3 = tf.get_default_graph().get_tensor_by_name('inception_v3/pool_3:0')
ops = pool3.graph.get_operations()
for op_idx, op in enumerate(ops):
if 'inception_v3' in op.name:
for o in op.outputs:
shape = o.get_shape()
shape = [s.value for s in shape]
new_shape = []
for j, s in enumerate(shape):
if s == 1 and j == 0:
new_shape.append(None)
else:
new_shape.append(s)
o.set_shape(tf.TensorShape(new_shape))
w = tf.get_default_graph().get_operation_by_name("inception_v3/softmax/logits/MatMul").inputs[1]
logits = tf.matmul(tf.squeeze(pool3, [1, 2]), w)
softmax = tf.nn.softmax(logits)
_init_inception()
if __name__ =='__main__':
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
with tf.Session() as sess:
preds1 = get_features(x_train)
preds2 = get_features(x_train)
print(abs(preds1-preds2).max())